• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perturbation Auxiliary Problem Methods to Solve Generalized Variational Inequalities

Salmon, Geneviève 21 April 2001 (has links)
The first chapter provides some basic definitions and results from the theory of convex analysis and nonlinear mappings related to our work. Some sufficient conditions for the existence of a solution of problem (GVIP) are also recalled. In the second chapter, we first illustrate the scope of the auxiliary problem procedure designed to solve problems like (GVIP) by examining some well-known methods included in that framework. Then, we review the most representative convergence results for that class of methods that can be found in the literature in the case where F is singlevalued as well as in the multivalued case. Finally, we somewhat discuss the particular case of projection methods to solve affine variational inequalities. The third chapter introduces the variational convergence notion of Mosco and combines it with the auxiliary problem principle. Then, we recall the convergence conditions existing for the resulting perturbed scheme before our own contribution and we comment them. Finally, we introduce and illustrate the rate of convergence condition that we impose on the perturbations to obtain better convergence results. Chapter 4 presents global and local convergence results for the family of perturbed methods in the case where F is singlevalued. We also discuss how our results extend or improve the previous ones. Chapter 5 studies the multivalued case. First, we present convergence results generalizing those obtained when there is no perturbations. Then, we relax the scheme by means of a notion of enlargement of an operator and we provide convergence conditions for this inexact scheme. In Chapter 6, we build a bundle algorithm to solve problem (GVIP) and we study its convergence.

Page generated in 0.0753 seconds