• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Método de ajuste para MPC baseado em multi-cenários para sistemas não quadrados

Santos, José Eduardo Weber dos January 2016 (has links)
A utilização de controladores preditivos multivariáveis na indústria de processos cresceu significativamente nos últimos anos principalmente devido à versatilidade e a confiabilidade que essa ferramenta proporciona em termos de controle avançado. No entanto, aspectos relacionados à aplicação prática do que vem sendo desenvolvido no meio acadêmico possui pouca difusão na indústria devido às configurações clássicas adotadas, como sistemas quadrados (com o mesmo número de variáveis controladas e manipuladas), modelos lineares, utilização de setpoint e etc. diferindo daquilo que está disponível e é amplamente utilizado industrialmente: sistemas não-quadrados (geralmente com mais variáveis controladas do que manipuladas), modelos não-lineares e utilização de soft-constraints. Esse trabalho propõe uma metodologia para ajuste dos parâmetros presentes em um controlador preditivo, atento à variedade de algoritmos presentes na indústria de processos. Essa metodologia se baseia na obtenção do melhor desempenho alcançável para cada cenário de um modelo global do processo, atendendo as restrições de Número de Desempenho Robusto relativo (rRPN), Máxima Sensibilidade e restrições nas ações de controle. Baseado em um desempenho que é alcançável, o modelo linear global é escalonado (assim como a planta não-linear) e os pesos que levam o sistema para a melhor condição operacional são estimados. Essa técnica abrange controladores operando em faixas e/ou setpoint e configurações não-quadradas, i.e., com mais variáveis controladas do que manipuladas. A abordagem proposta foi testada em uma planta de quatro tanques esféricos com aquecimento apresentando resultados coerentes, corroborando seu potencial de aplicação industrial. / Due to their versatility and reliability, Model Predictive Controllers (MPCs) are the standard solution for advanced process control in the process industry. However, there is a gap between the academic developments and the actual industrial applications, since the most academic studies focus on systems working with set-points and same number of manipulated and controlled variables, whereas the industrial application cope with non-squared configuration usually with several controlled variables in ranging and a reduced number of manipulated variables. This work proposes a tuning methodology for the countable parameters presents in a typical industrial predictive controller, considering the variety of the algorithms presents commercially in the process industry. This methodology is based on the estimation of the best attainable performance for each scenario of the global model of the process, constrained by the relative Robust Performance Number (rRPN), Maximal Sensitivity and restrictions in the control actions. Based on a performance that is attainable, the linear global model is scaled (and the non-linear) and the weights that lead the system to the best operational condition are estimated. This technique covers controllers operating in zones of control and/or set-point tracking and non-square configurations, i.e., with more controlled variables than manipulated. The proposed approach was tested in a Quadruple-Spherical tanks heating system presenting coherent results indicating its potential for industrial applications.
2

Método de ajuste para MPC baseado em multi-cenários para sistemas não quadrados

Santos, José Eduardo Weber dos January 2016 (has links)
A utilização de controladores preditivos multivariáveis na indústria de processos cresceu significativamente nos últimos anos principalmente devido à versatilidade e a confiabilidade que essa ferramenta proporciona em termos de controle avançado. No entanto, aspectos relacionados à aplicação prática do que vem sendo desenvolvido no meio acadêmico possui pouca difusão na indústria devido às configurações clássicas adotadas, como sistemas quadrados (com o mesmo número de variáveis controladas e manipuladas), modelos lineares, utilização de setpoint e etc. diferindo daquilo que está disponível e é amplamente utilizado industrialmente: sistemas não-quadrados (geralmente com mais variáveis controladas do que manipuladas), modelos não-lineares e utilização de soft-constraints. Esse trabalho propõe uma metodologia para ajuste dos parâmetros presentes em um controlador preditivo, atento à variedade de algoritmos presentes na indústria de processos. Essa metodologia se baseia na obtenção do melhor desempenho alcançável para cada cenário de um modelo global do processo, atendendo as restrições de Número de Desempenho Robusto relativo (rRPN), Máxima Sensibilidade e restrições nas ações de controle. Baseado em um desempenho que é alcançável, o modelo linear global é escalonado (assim como a planta não-linear) e os pesos que levam o sistema para a melhor condição operacional são estimados. Essa técnica abrange controladores operando em faixas e/ou setpoint e configurações não-quadradas, i.e., com mais variáveis controladas do que manipuladas. A abordagem proposta foi testada em uma planta de quatro tanques esféricos com aquecimento apresentando resultados coerentes, corroborando seu potencial de aplicação industrial. / Due to their versatility and reliability, Model Predictive Controllers (MPCs) are the standard solution for advanced process control in the process industry. However, there is a gap between the academic developments and the actual industrial applications, since the most academic studies focus on systems working with set-points and same number of manipulated and controlled variables, whereas the industrial application cope with non-squared configuration usually with several controlled variables in ranging and a reduced number of manipulated variables. This work proposes a tuning methodology for the countable parameters presents in a typical industrial predictive controller, considering the variety of the algorithms presents commercially in the process industry. This methodology is based on the estimation of the best attainable performance for each scenario of the global model of the process, constrained by the relative Robust Performance Number (rRPN), Maximal Sensitivity and restrictions in the control actions. Based on a performance that is attainable, the linear global model is scaled (and the non-linear) and the weights that lead the system to the best operational condition are estimated. This technique covers controllers operating in zones of control and/or set-point tracking and non-square configurations, i.e., with more controlled variables than manipulated. The proposed approach was tested in a Quadruple-Spherical tanks heating system presenting coherent results indicating its potential for industrial applications.
3

Método de ajuste para MPC baseado em multi-cenários para sistemas não quadrados

Santos, José Eduardo Weber dos January 2016 (has links)
A utilização de controladores preditivos multivariáveis na indústria de processos cresceu significativamente nos últimos anos principalmente devido à versatilidade e a confiabilidade que essa ferramenta proporciona em termos de controle avançado. No entanto, aspectos relacionados à aplicação prática do que vem sendo desenvolvido no meio acadêmico possui pouca difusão na indústria devido às configurações clássicas adotadas, como sistemas quadrados (com o mesmo número de variáveis controladas e manipuladas), modelos lineares, utilização de setpoint e etc. diferindo daquilo que está disponível e é amplamente utilizado industrialmente: sistemas não-quadrados (geralmente com mais variáveis controladas do que manipuladas), modelos não-lineares e utilização de soft-constraints. Esse trabalho propõe uma metodologia para ajuste dos parâmetros presentes em um controlador preditivo, atento à variedade de algoritmos presentes na indústria de processos. Essa metodologia se baseia na obtenção do melhor desempenho alcançável para cada cenário de um modelo global do processo, atendendo as restrições de Número de Desempenho Robusto relativo (rRPN), Máxima Sensibilidade e restrições nas ações de controle. Baseado em um desempenho que é alcançável, o modelo linear global é escalonado (assim como a planta não-linear) e os pesos que levam o sistema para a melhor condição operacional são estimados. Essa técnica abrange controladores operando em faixas e/ou setpoint e configurações não-quadradas, i.e., com mais variáveis controladas do que manipuladas. A abordagem proposta foi testada em uma planta de quatro tanques esféricos com aquecimento apresentando resultados coerentes, corroborando seu potencial de aplicação industrial. / Due to their versatility and reliability, Model Predictive Controllers (MPCs) are the standard solution for advanced process control in the process industry. However, there is a gap between the academic developments and the actual industrial applications, since the most academic studies focus on systems working with set-points and same number of manipulated and controlled variables, whereas the industrial application cope with non-squared configuration usually with several controlled variables in ranging and a reduced number of manipulated variables. This work proposes a tuning methodology for the countable parameters presents in a typical industrial predictive controller, considering the variety of the algorithms presents commercially in the process industry. This methodology is based on the estimation of the best attainable performance for each scenario of the global model of the process, constrained by the relative Robust Performance Number (rRPN), Maximal Sensitivity and restrictions in the control actions. Based on a performance that is attainable, the linear global model is scaled (and the non-linear) and the weights that lead the system to the best operational condition are estimated. This technique covers controllers operating in zones of control and/or set-point tracking and non-square configurations, i.e., with more controlled variables than manipulated. The proposed approach was tested in a Quadruple-Spherical tanks heating system presenting coherent results indicating its potential for industrial applications.
4

FCC : controle preditivo e identificação via redes neurais

Vieira, William Gonçalves 12 June 2002 (has links)
Orientadores: Ana Maria Frattini Fileti, Florival Rodrigues de Carvalho / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-03T02:39:01Z (GMT). No. of bitstreams: 1 Vieira_WilliamGoncalves_D.pdf: 7050309 bytes, checksum: c1e288d81c3eebed686e86e3bcc5edda (MD5) Previous issue date: 2002 / Resumo: A unidade de Craqueamento Catalítico em Leito Fluido - FCC, modelo Kellogg Orthoflow F., representa um processo de refino de petróleo apresentando característica altamente não linear, possuindo fortes interaçães entre as variáveis de produção, e condições de operação extremamente severas. Essas unidades são constituídas basicamente de duas seções: uma de reação catalítica na qual ocorrem as reações de quebra de cadeia hidrocarbônica e também há formação de coque, desativando o catalisador; e outra seção onde ocorre a regeneração do catalisador desativado. O objetivo dessa unidade é transformar produtos de elevado peso molecu1ar, que apresentam baixo valor agregado, em compostos de elevado valor comercial. As unidades FCC, devido às condições severas de operação, necessitam de um controle rigoroso de determinadas variáveis operacionais. Apesar de existirem instalados controladores avançados baseados em modelos de convolução, fteqüentemente essas unidades são reguladas por meio de controladores PID padrões e também através de controle manual baseado no conhecimento de operadores das refinarias. O presente estudo tem como objetivo desenvolver um controlador preditivo multivariável (Multivariable Predictive Control - MPC) para ser implementado na unidade FCC, utilizando Redes Neurais Artificiais (RNA) como modelo interno do controlador. Inicialmente é previsto realizar a identificação do processo da FCC em RNA, obedecendo a seguinte estratégia: usando um modelo fenomenológico que representa a unidade industrial, e partindo de um estado inicial são aplicados diversos degraus nas variáveis manipuladas analisando as respostas nas variáveis controladas do processo. A partir destas simulações são gerados diversos conjuntos de dados divididos em grupos de treinamento, validação e teste. Diversas redes neurais do tipo multicamada feedforward são então criadas para representar o modelo fenomenológico, sendo selecionada aquela que apresenta melhor desempenho, quando comparada com o modelo. A configuração da RNA escolhida como modelo interno foi 8x15x4 (camadas de entrada, escondida e de saída, respectivamente) apresentando um erro relativo máximo de 1% quando comparado com os resultados do modelo rigoroso. Posteriormente, foi previsto desenvolver um controlador preditivo multivariável usando como modelo interno esta rede selecionada. Este controlador foi implementado dentro da rotina do modelo fenomenológico, sendo então realizados testes para verificar seu desempenho, comparando o resultado com o sistema aberto e também com o controlador DMC (Dynamic Matrix Contro!) existente. Diversos horizontes de predição e controle foram analisados, sendo selecionados aqueles que apresentaram melhor desempenho. Foi introduzido um ruído nos sinais do modelo fenomenológico para testar a robustez do controlador proposto. O controlador apresentou bom desempenho mesmo na presença de ruídos de 1,5%, levando sempre as variáveis controladas para seus valores de referência, o que comprova sua robustez. Baseados nestes resultados, conclui-se que um controlador preditivo multivariável baseado em RNA é perfeitamente capaz de controlar um sistema não linear de porte do FCC, onde elevada interação entre suas variáveis operacionais e fortes restrições estão presentes. Isto nos permite extrapolar que são boas as expectativas para uma futura utilização na unidade industrial, principalmente devido à sua simplicidade, robustez e facilidade de implementação, a despeito da dificuldade de sintonia do controlador / Abstract: The Fluid Cracking Catalytic unit - FCC, Kellogg Orthotlow F. model, represents a very strong nonlinear process, with severe interactions among the process variables, and extremely severe operation conditions. The unit is composed of two sections: one is the catalytic reaction, where the hydrocarbon breaks chain reactions and coke deposition take place becoming the catalyst inactive, and the other where the catalyst regeneration happens. The objective is to transform products derived ITom petroleum, with high molecular weight and low added value, into products with higher profit. Due to the severe operation conditions, rigorous control of some variable is needed. In spite of the existence of advanced control based on a convolution model, in practice, FCC units are ftequently regulated by standard PID controllers, and also through manual control actions based on the knowledge of the refinery operators. The objective of this study is to develop a Multivariable Predictive Control (MPC) to be implemented in the FCC unit, using the Artificial Neural Networks (ANN) as internal model. Initially, the process identification in ANN of the FCC was done by the following strategy: an initial state was fust achieved using numerical simulations based on the phenomenological mo deI. Then, several steps changes were applied to the manipulated variables and the response in the controlled variables were monitored and recorded. From these simulations, several groups of data were generated for training, validation and testing. The Neural Network of multilayer feedforward type were created to represent the phenomenological model, being selected the one that better represents the phenomenological model. The ANN configuration chosen to be the internal model was 8x15x4 (Input x Hidden x Output) architecture, with a maximum relative error below 1 % when comparing the results with the phenomenological model results. Later on, it was developed a multivariable predictive control based on this internal model. This control was implemented inside the routine of the phenomenological model. The performance tests were evaluated comparing the results with the open system and with the Dynamics Matrix Control (DMC). Several prediction and control horizons were analyzed. The ANN control presented good performance even in the presence of noise of 1,5% of intensity, taking back the controlled variables to its setpoints, proving its robustness. Based on these results, a multivariable predictive control based on ANN showed be perfectly able to control a nonlinear system like a FCC unit, where high interactions among process variables, and strong restriction conditions exists. This allows us to have good expectations for a future use in the industrial unit, mainly due to its simplicity, robustness and facility ofuse, in spite ofthe difliculty oftune control / Doutorado / Sistemas de Processos Quimicos e Informatica / Doutor em Engenharia Química
5

Estudo e implementação de métodos de validação de modelos matemáticos aplicados no desenvolvimento de sistemas de controle de processos industriais. / Research and implementation of mathematical model validation methods applied in the development of industrial process control systems.

Alvarado, Christiam Segundo Morales 22 June 2017 (has links)
A validação de modelos lineares é uma etapa importante em um projeto de Identificação de Sistemas, pois a escolha correta do modelo para representar a maior parte da dinâmica do processo, dentro de um número finito de técnicas de identificação e em torno de um ponto de operação, permite o sucesso no desenvolvimento de controladores preditivos e de controladores robustos. Por tal razão, o objetivo principal desta Tese é o desenvolvimento de um método de validação de modelos lineares, tendo como ferramentas de avaliação os métodos estatísticos, avaliações dinâmicas e análise da robustez do modelo. O componente principal do sistema de validação de modelos lineares proposto é o desenvolvimento de um sistema fuzzy para análise dos resultados obtidos pelas ferramentas utilizadas na etapa de validação. O projeto de Identificação de Sistemas é baseado em dados reais de operação de uma Planta-Piloto de Neutralização de pH, localizada no Laboratório de Controle de Processos Industriais da Escola Politécnica da USP. Para verificar o resultado da validação, todos os modelos são testados em um controlador preditivo do tipo QDMC (Quadratic Dynamic Matrix Control) para seguir uma trajetória de referência. Os critérios utilizados para avaliar o desempenho do controlador QDMC, para cada modelo utilizado, foram a velocidade de resposta do controlador e o índice da mínima variabilidade da variável de processo. Os resultados mostram que a confiabilidade do sistema de validação projetado para malhas com baixa e alta não-linearidade em um processo real, foram de 85,71% e 50%, respectivamente, com relação aos índices de desempenho obtidos pelo controlador QDMC. / Linear model validation is the most important stage in System Identification Project because, the model correct selection to represent the most of process dynamic allows the success in the development of predictive and robust controllers, within identification technique finite number and around the operation point. For this reason, the development of linear model validation methods is the main objective in this Thesis, taking as a tools of assessing the statistical, dynamic and robustness methods. Fuzzy system is the main component of model linear validation system proposed to analyze the results obtained by the tools used in validation stage. System Identification project is performed through operation real data of a pH neutralization pilot plant, located at the Industrial Process Control Laboratory, IPCL, of the Escola Politécnica of the University of São Paulo, Brazil. In order to verify the validation results, all modes are used in QDMC type predictive controller, to follow a set point tracking. The criterions used to assess the QDMC controller performance were the speed response and the process variable minimum variance index, for each model used. The results show that the validation system reliability were 85.71% and 50% projected for low and high non-linearity in a real process, respectively, linking to the performance indexes obtained by the QDMC controller.
6

Estudo e implementação de métodos de validação de modelos matemáticos aplicados no desenvolvimento de sistemas de controle de processos industriais. / Research and implementation of mathematical model validation methods applied in the development of industrial process control systems.

Christiam Segundo Morales Alvarado 22 June 2017 (has links)
A validação de modelos lineares é uma etapa importante em um projeto de Identificação de Sistemas, pois a escolha correta do modelo para representar a maior parte da dinâmica do processo, dentro de um número finito de técnicas de identificação e em torno de um ponto de operação, permite o sucesso no desenvolvimento de controladores preditivos e de controladores robustos. Por tal razão, o objetivo principal desta Tese é o desenvolvimento de um método de validação de modelos lineares, tendo como ferramentas de avaliação os métodos estatísticos, avaliações dinâmicas e análise da robustez do modelo. O componente principal do sistema de validação de modelos lineares proposto é o desenvolvimento de um sistema fuzzy para análise dos resultados obtidos pelas ferramentas utilizadas na etapa de validação. O projeto de Identificação de Sistemas é baseado em dados reais de operação de uma Planta-Piloto de Neutralização de pH, localizada no Laboratório de Controle de Processos Industriais da Escola Politécnica da USP. Para verificar o resultado da validação, todos os modelos são testados em um controlador preditivo do tipo QDMC (Quadratic Dynamic Matrix Control) para seguir uma trajetória de referência. Os critérios utilizados para avaliar o desempenho do controlador QDMC, para cada modelo utilizado, foram a velocidade de resposta do controlador e o índice da mínima variabilidade da variável de processo. Os resultados mostram que a confiabilidade do sistema de validação projetado para malhas com baixa e alta não-linearidade em um processo real, foram de 85,71% e 50%, respectivamente, com relação aos índices de desempenho obtidos pelo controlador QDMC. / Linear model validation is the most important stage in System Identification Project because, the model correct selection to represent the most of process dynamic allows the success in the development of predictive and robust controllers, within identification technique finite number and around the operation point. For this reason, the development of linear model validation methods is the main objective in this Thesis, taking as a tools of assessing the statistical, dynamic and robustness methods. Fuzzy system is the main component of model linear validation system proposed to analyze the results obtained by the tools used in validation stage. System Identification project is performed through operation real data of a pH neutralization pilot plant, located at the Industrial Process Control Laboratory, IPCL, of the Escola Politécnica of the University of São Paulo, Brazil. In order to verify the validation results, all modes are used in QDMC type predictive controller, to follow a set point tracking. The criterions used to assess the QDMC controller performance were the speed response and the process variable minimum variance index, for each model used. The results show that the validation system reliability were 85.71% and 50% projected for low and high non-linearity in a real process, respectively, linking to the performance indexes obtained by the QDMC controller.
7

Avaliação de desempenho de controladores preditivos multivariáveis

Santos, Rodrigo Ribeiro 11 November 2013 (has links)
In advanced process control, the Model Predictive Control (MPC) may be considered the most important innovation in recent years and the standard tool for industrial applications due to the fact that it keeps the plant operating in the constraints more profitable. However, like every control algorithm, the MPC after some time in operation rarely works as originally designed. Thus, to preserve the benefits of MPC systems for a long period of time, their performance needs to be monitored and evaluated during the operation. This task require the presence of reliable and effective tools to detect when the controller performance is below of the desirable, to define the need, or not, of recommissioning the system. Thus, the objective of this work is development of techniques for monitoring and evaluating the performance of multivariable predictive controllers, being developed two new tools: LQG benchmark Modified and IHMC benchmark. The results obtained from numerical simulations were satisfactory and consistent with the technical literature applied in the developments of the evaluators, which were used in the monitoring of the control system MPC of the oil-water-gas three-phase separation process, offering an appropriate solution and providing subsidies for implementations in real industrial systems. / Em controle avançado de processos, o controlador preditivo ou MPC (Model Predictive Control) pode ser considerado como a mais importante inovação dos últimos anos e a ferramenta padrão para aplicações industriais, devido ao fato do MPC manter a planta operando dentro das suas restrições de forma mais lucrativa. Entretanto, como todo algoritmo de controle, o MPC depois de algum tempo em operação dificilmente funciona como quando fora inicialmente projetado. Desta forma, com o objetivo de manter os benefícios dos sistemas MPC por um longo período de tempo, seu desempenho precisa ser monitorado e avaliado durante a operação. Esta tarefa requer a presença de ferramentas efetivas e confiáveis para detectar quando o desempenho do controlador estiver abaixo do desejável, para definir a necessidade, ou não, de um recomissionamento do sistema. Destarte, aborda-se neste trabalho o desenvolvimento de técnicas para monitoramento e avaliação de desempenho de controladores preditivos multivariáveis, sendo desenvolvidas duas novas ferramentas: LQG benchmark Modificado e IHMC benchmark. Os resultados obtidos a partir de simulações numéricas foram satisfatórios e coerentes com a literatura técnica aplicada no desenvolvimento dos avaliadores, os quais foram utilizados no monitoramento do sistema de controle MPC do processo de separação trifásica água-óleo-gás, oferecendo assim uma solução apropriada e fornecendo subsídios para implementações em sistemas industrias reais.

Page generated in 0.0959 seconds