• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multivariate Bayesian Process Control

Yin, Zhijian 01 August 2008 (has links)
Multivariate control charts are valuable tools for multivariate statistical process control (MSPC) used to monitor industrial processes and to detect abnormal process behavior. It has been shown in the literature that Bayesian control charts are optimal tools to control the process compared with the non-Bayesian charts. To use any control chart, three control chart parameters must be specified, namely the sample size, the sampling interval and the control limit. Traditionally, control chart design is based on its statistical performance. Recently, industrial practitioners and academic researchers have increasingly recognized the cost benefits obtained by applying the economically designed control charts to quality control, equipment condition monitoring, and maintenance decision-making. The primary objective of this research is to design multivariate Bayesian control charts (MVBCH) both for quality control and conditional-based maintenance (CBM) applications. Although considerable research has been done to develop MSPC tools under the assumption that the observations are independent, little attention has been given to the development of MSPC tools for monitoring multivariate autocorrelated processes. In this research, we compare the performance of the squared predication error (SPE) chart using a vector autoregressive moving average with exogenous variables (VARMAX) model and a partial least squares (PLS) model for a multivariate autocorrelated process. The study shows that the use of SPE control charts based on the VARMAX model allows rapid detection of process disturbances while reducing false alarms. Next, the economic and economic-statistical design of a MVBCH for quality control considering the control limit policy proved to be optimal by Makis(2007) is developed. The computational results illustrate that the MVBCH performs considerably better than the MEWMA chart, especially for smaller mean shifts. Sensitivity analyses further explore the impact of the misspecified out-of-control mean on the actual average cost. Finally, design of a MVBCH for CBM applications is considered using the same control limit policy structure and including an observable failure state. Optimization models for the economic and economic statistical design of the MVBCH for a 3 state CBM model are developed and comparison results show that the MVBCH performs better than recently developed CBM Chi-square chart.
2

Multivariate Bayesian Process Control

Yin, Zhijian 01 August 2008 (has links)
Multivariate control charts are valuable tools for multivariate statistical process control (MSPC) used to monitor industrial processes and to detect abnormal process behavior. It has been shown in the literature that Bayesian control charts are optimal tools to control the process compared with the non-Bayesian charts. To use any control chart, three control chart parameters must be specified, namely the sample size, the sampling interval and the control limit. Traditionally, control chart design is based on its statistical performance. Recently, industrial practitioners and academic researchers have increasingly recognized the cost benefits obtained by applying the economically designed control charts to quality control, equipment condition monitoring, and maintenance decision-making. The primary objective of this research is to design multivariate Bayesian control charts (MVBCH) both for quality control and conditional-based maintenance (CBM) applications. Although considerable research has been done to develop MSPC tools under the assumption that the observations are independent, little attention has been given to the development of MSPC tools for monitoring multivariate autocorrelated processes. In this research, we compare the performance of the squared predication error (SPE) chart using a vector autoregressive moving average with exogenous variables (VARMAX) model and a partial least squares (PLS) model for a multivariate autocorrelated process. The study shows that the use of SPE control charts based on the VARMAX model allows rapid detection of process disturbances while reducing false alarms. Next, the economic and economic-statistical design of a MVBCH for quality control considering the control limit policy proved to be optimal by Makis(2007) is developed. The computational results illustrate that the MVBCH performs considerably better than the MEWMA chart, especially for smaller mean shifts. Sensitivity analyses further explore the impact of the misspecified out-of-control mean on the actual average cost. Finally, design of a MVBCH for CBM applications is considered using the same control limit policy structure and including an observable failure state. Optimization models for the economic and economic statistical design of the MVBCH for a 3 state CBM model are developed and comparison results show that the MVBCH performs better than recently developed CBM Chi-square chart.
3

Design and Mining of Health Information Systems for Process and Patient Care Improvement

January 2018 (has links)
abstract: In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and convenient access to diagnostic images from multiple modalities. How to integrate such HISs and best utilize their data remains a challenging problem due to the disparity of HISs as well as high-dimensionality and heterogeneity of the data. My PhD dissertation research includes three inter-connected and integrated topics and focuses on designing integrated HISs and further developing statistical models and machine learning algorithms for process and patient care improvement. Topic 1: Design of super-HIS and tracking of quality of care (QoC). My research developed an information technology that integrates multiple HISs in radiology, and proposed QoC metrics defined upon the data that measure various dimensions of care. The DDD assisted the clinical practices and enabled an effective intervention for reducing lengthy radiologist turnaround times for patients. Topic 2: Monitoring and change detection of QoC data streams for process improvement. With the super-HIS in place, high-dimensional data streams of QoC metrics are generated. I developed a statistical model for monitoring high- dimensional data streams that integrated Singular Vector Decomposition (SVD) and process control. The algorithm was applied to QoC metrics data, and additionally extended to another application of monitoring traffic data in communication networks. Topic 3: Deep transfer learning of archive HIS data for computer-aided diagnosis (CAD). The novelty of the CAD system is the development of a deep transfer learning algorithm that combines the ideas of transfer learning and multi- modality image integration under the deep learning framework. Our system achieved high accuracy in breast cancer diagnosis compared with conventional machine learning algorithms. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2018

Page generated in 0.083 seconds