1 |
Multivariate Regular Variation and its ApplicationsMariko, Dioulde Habibatou January 2015 (has links)
In this thesis, we review the basic notions related to univariate regular variation and study some fundamental properties of regularly varying random variables. We then consider the notion of regular variation in the multivariate case. After collecting some results from multivariate regular variation for random vectors with values in $\mathbb{R}_{+}^{d}$, we discuss its properties and examine several examples of multivariate regularly varying random vectors such as independent and identically distributed random vectors, fully dependent random vectors and other models. We also present the elements of univariate and multivariate extreme value theory and emphasize the connection with multivariate regular variation. Some measures of extreme dependence such as the stable tail dependence function and the Pickands dependence function are presented. We end the study by conducting a data analysis using financial data. In the univariate case, graphical tools such as quantile-quantile plots, mean excess plots and Hill plots are used in order to determine the underlying distribution of the univariate data. In the multivariate case, non-parametric estimators of the stable tail dependence function and the Pickands dependence function are used to describe the dependence structure of the multivariate data.
|
2 |
Quantitative analysis of extreme risks in insurance and financeYuan, Zhongyi 01 May 2013 (has links)
In this thesis, we aim at a quantitative understanding of extreme risks. We use heavy-tailed distribution functions to model extreme risks, and use various tools, such as copulas and MRV, to model dependence structures. We focus on modeling as well as quantitatively estimating certain measurements of extreme risks.
We start with a credit risk management problem. More specifically, we consider a credit portfolio of multiple obligors subject to possible default. We propose a new structural model for the loss given default, which takes into account the severity of default. Then we study the tail behavior of the loss given default under the assumption that the losses of the obligors jointly follow an MRV structure. This structure provides an ideal framework for modeling both heavy tails and asymptotic dependence. Using HRV, we also accommodate the asymptotically independent case. Multivariate models involving Archimedean copulas, mixtures and linear transforms are revisited.
We then derive asymptotic estimates for the Value at Risk and Conditional Tail Expectation of the loss given default and compare them with the traditional empirical estimates.
Next, we consider an investor who invests in multiple lines of business and study a capital allocation problem. A randomly weighted sum structure is proposed, which can capture both the heavy-tailedness of losses and the dependence among them, while at the same time separates the magnitudes from dependence. To pursue as much generality as possible, we do not impose any requirement on the dependence structure of the random weights. We first study the tail behavior of the total loss and obtain asymptotic formulas under various sets of conditions. Then we derive asymptotic formulas for capital allocation and further refine them to be explicit for some cases.
Finally, we conduct extreme risk analysis for an insurer who makes investments. We consider a discrete-time risk model in which the insurer is allowed to invest a proportion of its wealth in a risky stock and keep the rest in a risk-free bond. Assume that the claim amounts within individual periods follow an autoregressive process with heavy-tailed innovations and that the log-returns of the stock follow another autoregressive process, independent of the former one. We derive an asymptotic formula for the finite-time ruin probability and propose a hybrid method, combining simulation with asymptotics, to compute this ruin probability more efficiently. As an application, we consider a portfolio optimization problem in which we determine the proportion invested in the risky stock that maximizes the expected terminal wealth subject to a constraint on the ruin probability.
|
3 |
Statistical Inference for Heavy Tailed Time Series and VectorsTong, Zhigang January 2017 (has links)
In this thesis we deal with statistical inference related to extreme value phenomena.
Specifically, if X is a random vector with values in d-dimensional space, our goal is
to estimate moments of ψ(X) for a suitably chosen function ψ when the magnitude
of X is big. We employ the powerful tool of regular variation for random variables,
random vectors and time series to formally define the limiting quantities of interests
and construct the estimators. We focus on three statistical estimation problems: (i)
multivariate tail estimation for regularly varying random vectors, (ii) extremogram
estimation for regularly varying time series, (iii) estimation of the expected shortfall
given an extreme component under a conditional extreme value model. We establish asymptotic normality of estimators for each of the estimation problems. The theoretical findings are supported by simulation studies and the estimation procedures are applied to some financial data.
|
4 |
Über Zusammenhänge von leichten Tails, regulärer Variation und Extremwerttheorie / On Some Connections between Light Tails, Regular Variation and ExtremesJanßen, Anja 03 November 2010 (has links)
No description available.
|
5 |
Modelling of extremesHitz, Adrien January 2016 (has links)
This work focuses on statistical methods to understand how frequently rare events occur and what the magnitude of extreme values such as large losses is. It lies in a field called extreme value analysis whose scope is to provide support for scientific decision making when extreme observations are of particular importance such as in environmental applications, insurance and finance. In the univariate case, I propose new techniques to model tails of discrete distributions and illustrate them in an application on word frequency and multiple birth data. Suitably rescaled, the limiting tails of some discrete distributions are shown to converge to a discrete generalized Pareto distribution and generalized Zipf distribution respectively. In the multivariate high-dimensional case, I suggest modeling tail dependence between random variables by a graph such that its nodes correspond to the variables and shocks propagate through the edges. Relying on the ideas of graphical models, I prove that if the variables satisfy a new notion called asymptotic conditional independence, then the density of the joint distribution can be simplified and expressed in terms of lower dimensional functions. This generalizes the Hammersley- Clifford theorem and enables us to infer tail distributions from observations in reduced dimension. As an illustration, extreme river flows are modeled by a tree graphical model whose structure appears to recover almost exactly the actual river network. A fundamental concept when studying limiting tail distributions is regular variation. I propose a new notion in the multivariate case called one-component regular variation, of which Karamata's and the representation theorem, two important results in the univariate case, are generalizations. Eventually, I turn my attention to website visit data and fit a censored copula Gaussian graphical model allowing the visualization of users' behavior by a graph.
|
Page generated in 0.1952 seconds