• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 18
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A multiwavelength investigation of blazar-type active galactic nuclei.

Bastin, Fane Troy January 2013 (has links)
A multiwavelength investigation is conducted for nineteen blazar-type active galactic nuclei. Studies of variability timescales and flux duty cycles are performed at x- and gamma-rays for each source, with the relationship between flux and spectral index also being probed at gamma wavelengths. The correlation between these two energy ranges is also investigated, by utilising the Discrete Correlation Function with both one and ten day binning. The sources were chosen for their availability over a range of different x- and gamma-ray data sources: observations utilised include 0.2 - 150 keV x-ray data from the Swift mission and 200 MeV- 300 GeV gamma-ray data from the Fermi mission. Daily-binned Fermi data is used to calculate the smallest rise and decay e-folding times in gamma for each source. The results range from 0.4 to 21 days, corresponding to limits on the size of the gamma emission region ranging from Rd^-1 = 4.39 x 10^12 to Rd^-1 = 5.14 x 10^14 m. Flux duty cycles for fourteen sources are created from Fermi data, with six displaying structure at high fluxes that indicate flaring states have occured. Five of these six sources also display clear flares in their light curves, confirming these results. The relationship between the flux and the spectral index shows eight of nineteen sources exhibit harder-when-brighter behaviour. Four of these eight have been previously confirmed to display such behaviour. Results from the Discrete Correlation Function show a correlation at a time lag of ~ 600 days for H 1426+428, of uncertain origin. Gaussian functions are fitted to possible near-zero peaks in 3C 66A, 3C 454.3 and Mrk 421, which could be indicative of a synchrotron self-Compton component to the emission of these objects.
2

Raman spectroscopic and potentiometric studies of acidity level and dissociation of citric acid in aqueous solution

Elbagerma, Mohamed A., Alajtal, Adel I., Edwards, Howell G.M., Azimi, G.H., Verma, K.D., Scowen, Ian J. January 2015 (has links)
No / The dissociation constant is one of the most important characteristics of a pharmaceutical chemical moiety which has to be estimated with accuracy. The development of in-situ speciation methods in solutions with parallel measurements using Raman spectroscopy (molecular) and pH (macroscopic) for the identification, characterization, and quantitative determination of citric acid species in aqueous solution by numerical data treatment using a multiwavelength curve fitting program over a range of pH values is described. As a result, the first, second and third stepwise dissociation constants of citric acid have been evaluated as 3.02±0.06, 4.78±0.06 and 6.02±0.04, respectively. From these data over the pH range 2.38-6.16 an excellent agreement with literature values was achieved.
3

The history and rate of star formation within the G305 complex

Faimali, Alessandro Daniele January 2013 (has links)
Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 μm and SPIRE 250, 350, and 500 μm observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanolmaser,MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500)! 1 and log(F160/F350)! 1.6 to identify an additional 31 embedded massive star candidates with no associated starformation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 M! yr−1. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of !2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour selection criteria and fitting reddened stellar atmosphere models, we are able remove a significant amount of contaminating sources from our sample, leaving us with a highly reliable sample of some 599 candidate YSOs. From this sample, we derive a present-day SFR of 0.005±0.001M! yr−1, and find the YSOmass function (YMF) of G305 to be significantly steeper than the standard Salpeter-Kroupa IMF. We find evidence of mass segregation towards G305, with a significant variation of the YMF both with the active star-forming region, and the outer region. The spatial distribution, and age gradient, of our 601 candidate YSOs also seem to rule out the scenario of propagating star formation within G305, with a more likely scenario of punctuated star formation over the lifetime of the complex.
4

The ill-posed inversion of multiwavelength lidar data by a hybrid method of variable projection

Böckmann, Christine, Sarközi, Janos January 1999 (has links)
The ill-posed problem of aerosol distribution determination from a small number of backscatter and extinction lidar measurements was solved successfully via a hybrid method by a variable dimension of projection with B-Splines. Numerical simulation results with noisy data at different measurement situations show that it is possible to derive a reconstruction of the aerosol distribution only with 4 measurements.
5

Retrieval of multimodal aerosol size distribution by inversion of multiwavelength data

Böckmann, Christine, Biele, Jens, Neuber, Roland, Niebsch, Jenny January 1997 (has links)
The ill-posed problem of aerosol size distribution determination from a small number of backscatter and extinction measurements was solved successfully with a mollifier method which is advantageous since the ill-posed part is performed on exactly given quantities, the points r where n(r) is evaluated may be freely selected. A new twodimensional model for the troposphere is proposed.
6

New Multiwavelength Variability and Optical Microvariability Investigations of X-ray and Radio Selected Blazars

Osterman, Margaret Angela 04 December 2007 (has links)
The extreme AGN known as blazars can be classified based on their spectral properties into X-ray and radio selected objects, known as XBLs and RBLs, respectively. In this work, the results of new multiwavelength campaigns are presented for two XBLs and two RBLs. Each campaign contains simultaneous observations in the radio, optical, and X-ray regimes. A campaign on a third RBL was completed using near-simultaneous archival radio, optical/IR, and gamma-ray data. The simultaneous multiwavelength behavior exhibited in each campaign was analyzed by examining the multiwavelength variability and using spectral analysis. Observations of prominent optical microvariability were quantitatively analyzed. Previously published results for other blazars were compared to the new and archival results. Many interesting results emerged from these investigations. PG 1553+11, a radio-weak blazar, was found to be an extreme XBL. During three campaigns performed for the XBL PKS 2155-304, different variability behavior was observed each time. In a high flux state, the X-ray behavior was strongly correlated with the optical behavior. In a weak state, the X-ray and optical behaviors were not correlated. In an intermediate state, the X-ray behavior was somewhat correlated with the optical behavior. CTA 102, an RBL, exhibited some of the most extreme optical microvariability ever observed, including a brightening of about 0.07 magnitudes in less than 15 minutes. Surprisingly, the optical spectra of RBLs CTA 102, PKS 1622-297, and 3C 345 were found to become redder when in a brighter flux state. The RBLs all exhibited large amplitude optical microvariability. The campaigns on PG 1553+11, CTA 102, and PKS 1622-297 were the first simultaneous multiwavelength campaigns performed for these objects. For objects in which the results of at least two campaigns were available, including PKS 2155-304, correlations that appeared to be present at one epoch seemed to vanish at other times. The SSC model represented many of the observations well. Color studies of the selected BL Lac objects found them to be bluer when brighter, while the selected FSRQs were found to be redder when brighter. These results provide strong motivation for future multiwavelength campaigns that provide broader wavelength and more extensive temporal coverage.
7

Constraining the Evolution of Galaxies over the Interaction Sequence with Multiwavelength Observations and Simulations

Lanz, Lauranne 18 October 2013 (has links)
Interactions are crucial for galaxy formation and profoundly affect their evolution. However, our understanding of the impact of interactions on star formation and activity of the central supermassive black hole remains incomplete. In the canonical picture of the interaction process, these processes are expected to undergo a strong enhancement, but some recent studies have not found this prediction to be true in a statistically meaningful sense. This thesis uses a sample of local interactions observed from the ultraviolet to the far-infrared and a suite of N-body hydrodynamic simulations of interactions to examine the evolution of star formation, stellar mass, dust properties, and spectral energy distributions (SEDs) over the interaction sequence. / Astronomy
8

External Cavity Multiwavelength Semiconductor Mode-locked Laser Gain Dynamics

Archundia-Berra, Luis 01 January 2006 (has links)
External cavity semiconductor mode-locked lasers can produce pulses of a few picoseconds. The pulses from these lasers are inherently chirped with a predominant linear chirp component that can be compensated resulting in sub-picosecond pulses. External cavity semiconductor mode-locked lasers can be configured as multiwavelength pulse sources and are good candidates for time and wavelength division multiplexing applications. The gain medium in external cavity semiconductor mode-locked lasers is a semiconductor optical amplifier (SOA), and passive and hybrid mode-locked operation are achieved by the introduction of a saturable absorber (SA) in the laser cavity. Pump-probe techniques were used to measure the intracavity absorption dynamics of a SA in an external cavity semiconductor mode-locked laser and the gain dynamics of a SOA for the amplification of diverse pulses. The SOA gain dynamics measurements include the amplification of 750 fs pulses, 6.5 ps pulses, multiwavelength pulses and the intracavity gain dynamics of an external cavity multiwavelength semiconductor mode-locked laser. The experimental results show how the inherent chirp on pulses from external cavity semiconductor mode-locked lasers results in a slow gain depletion without significant fast gain dynamics. In the multiwavelength operation regime of these lasers, the chirp broadens the temporal pulse profile and decreases the temporal beating resulting from the phase correlation among wavelength channels. This results in a slow gain depletion mitigating nonlinearities and gain competition among wavelength channels in the SOA supporting the multiwavelength operation of the laser. Numerical simulations support the experimental results.
9

Spectral Variability Studies and Acceleration Scenarios in Jets of Blazars

Joshi, Manasvita 06 August 2009 (has links)
No description available.
10

Analytical method development for structural studies of pharmaceutical and related materials in solution and solid state : an investigation of the solid forms and mechanisms of formation of cocrystal systems using vibrational spectroscopic and X-ray diffraction techniques

Elbagerma, Mohamed A. January 2010 (has links)
Analysis of the molecular speciation of organic compounds in solution is essential for the understanding of ionic complexation. The Raman spectroscopic technique was chosen for this purpose because it allows the identification of compounds in different states and it can give information about the molecular geometry from the analysis of the vibrational spectra. In this research the ionisation steps of relevant pharmaceutical material have been studied by means of potentiometry coupled with Raman spectroscopy; the protonation and deprotonation behaviour of the molecules were studied in different pH regions. The abundance of the different species in the Raman spectra of aqueous salicylic acid, paracetamol, citric acid and salicylaldoxime have been identified, characterised and confirmed by numerical treatment of the observed spectral data using a multiwavelength curve-fitting program. The non-destructive nature of the Raman spectroscopic technique and the success of the application of the multiwavelength curve-fitting program demonstrated in this work have offered a new dimension for the rapid identification and characterisation of pharmaceuticals in solution and have indicated the direction of further research. The work also covers the formation of novel cocrystal systems with pharmaceutically relevant materials. The existence of new cocrystals of salicylic acid-nicotinic acid, DLphenylalanine , 6-hydroxynicotinic acid, and 3,4-dihydroxybenzoic acid with oxalic acid have been identified from stoichiometric mixtures using combined techniques of Raman spectroscopy (dispersive and transmission TRS), X-ray powder diffraction and thermal analysis. Raman spectroscopy has been used to demonstrate a number of important aspects regarding the nature of the molecular interactions in the cocrystal. Cocrystals of salicylic acid - benzamide, citric acid-paracetamol and citric acid -benzamide have been identified with similar analytical approaches and structurally characterised in detail with single crystal X-ray diffraction. From these studies the high selectivity and direct micro sampling of Raman spectroscopy make it possible to identify spectral contributions from each chemical constituent by a peak wavenumber comparison of single-component spectra (API and guest individually) and the two- component sample material (API/guest), thus allowing a direct assessment of cocrystal formation to be made. Correlation of information from Raman spectra have been made to the X-ray diffraction and thermal analysis results. Transmission Raman Spectroscopy has been applied to the study cocrystals for the first time. Identification of new phases of analysis of the low wavenumber Raman bands is demonstrated to be a key advantage of the TRS technique.

Page generated in 0.0764 seconds