Spelling suggestions: "subject:"murgantia"" "subject:"murganho""
1 |
Investigating host plant selection of harlequin bug, Murgantia histrionica (Hahn), in order to improve a trap cropping system for its managementWallingford, Anna Kate 04 May 2012 (has links)
Harlequin bug (HB), Murgantia histrionica (Hahn), is a pest of cole crops. Alternative control strategies were investigated for control of HB, including trap cropping and systemic neonicotinoid insecticide applications.
Potential trap crops, mustard (Brassica juncea "Southern Giant Curled" ), rapeseed (B. napus "Athena"), rapini (B. rapa) and arugula (Eruca sativa) were preferred over collard (B. oleracea "Champion"), and a non-brassica control, bean (Phaseolus vulgaris "Bronco") in field-cage choice tests. Harlequin bug could not complete development on bean, developed poorly on arugula but was found to complete development on mustard, collard, rapeseed and rapini.
In the field, mustard was found to be an effective trap crop for reducing HB feeding injury on collard at three experimental sites in 2010 and 2011. Augmentation of the mustard trap crop with a systemic, neonicotinoid insecticide did not increase the level of control of harlequin bug for the duration of the ten week growing period.
In olfactometer choice tests, male HB responded to plant volatiles of bean, collard and mustard, but preferred Brassica volatiles over those from bean. Female response to plant volatiles alone was weak and inconsistent. Both males and females preferred volatiles from other males feeding on Brassica host plant over plant volatiles alone, and were deterred by volatiles from males feeding on bean versus the plant alone.
Laboratory toxicity assays revealed that the neonicotinoid insecticides imidacloprid, thiamethoxam, dinotefuran, and clothianidin were toxic to HB nymphs; LC50 = 0.57, 0.52, 0.39, and 0.39 mg ai/liter, respectively. Field experiments were conducted to evaluate the efficacy of these insecticides over time when applied as a one-time drench, and all were found to provide significantly higher mortality of HB for at least 14 days after application. / Ph. D.
|
2 |
Murgantia histrionica (Hahn): new trapping tactics and insights on overwintering survivalDiMeglio, Anthony S. 19 December 2018 (has links)
Harlequin bugs are orange and black aggregation pheromone emitting stink bug pests, specifically of cole crops such as kale, broccoli and collards. This nearly loyal crop preference makes an interesting challenge for trapping them and helping farmers predict pest severity. Harlequin bugs can be found in much of North America, and are a serious problem in the southeastern United States. Presumably their persistence into northern regions is limited by extreme winters. In 2014 and 2015 the arctic polar vortex extended into mid-latitudes bringing a blanket of sustained sub-freezing temperatures to much of the United States. We used these events to determine effects of extreme winter weather on harlequin bug survival. In both years we observed nearly identical low temperatures of -15oC and this linked to high (80-96%) harlequin bug mortality. In the lab we measured exact lethal freezing temperatures in harlequin bugs (i.e. supercooling points) to see if a physiological metric could be used to predict overwinter survival. Harlequin bug adults froze and died at -10.4oC, and similarly, their larger juvenile stages freeze at -11.0oC. Freshly hatched harlequin bugs and unhatched eggs froze at considerably lower temperatures with eggs forming ice crystals at -23.2oC and recent hatches at -21.6oC. Now with an understanding of how harlequin bugs likely survive winter extreme, we can then work on developing a trap to tally their populations in the spring and predict summer and fall pest severity. In the lab and field, harlequin bug adults and large nymphs were more likely found on green and black colors, and statistically less frequently on yellow, white, purple or red colors with the exception of adult females, which were most attracted to red and green in the lab, but green and black in the field. To increase harlequin bug attraction to and termination at traps square corrugated plastic panels were wrapped with an insecticide netting and baited with harlequin bug aggregation pheromone, murgantiol. Bugs were effectively drawn to the panels, with green panels having significantly more dead harlequin bugs and fewer dead beneficial lady beetles (Coleoptera: Coccinellidae) at their base than yellow panels. Thus, green was chosen as the ideal trap color to use for another field experiment that evaluated three trap types -- a corrugated plastic square panel, pyramidal trap, and ramp trap -- each with three lure treatments, murgantiol alone or murgantiol plus a low or high rate of mustard oil. More bugs were killed with the pyramidal trap than with the panel trap or the ramp trap, and more bugs were killed at traps containing murgantiol combined with benzyl isothiocyanate than at those with murgantiol alone. This research demonstrated that with the proper visual elements and odors, harlequin bugs can be drawn to traps and effectively killed after contact with insecticide-incorporated netting. / MSLFS / Harlequin bugs are orange and black aggregation pheromone emitting stink bug pests, specifically of cole crops such as kale, broccoli and collards. This nearly loyal crop preference makes an interesting challenge for trapping them and helping farmers predict pest severity. Harlequin bugs can be found in much of North America, and are a serious problem in the southeastern United States. Presumably their persistence into northern regions is limited by extreme winters. In 2014 and 2015 the arctic polar vortex extended into mid-latitudes bringing a blanket of sustained sub-freezing temperatures to much of the United States. We used these events to determine effects of extreme winter weather on harlequin bug survival. In both years we observed nearly identical low temperatures of -15℃ and this linked to high (80-96%) harlequin bug mortality. In the lab we measured exact lethal freezing temperatures in harlequin bugs (i.e. supercooling points) to see if a physiological metric could be used to predict overwinter survival. Harlequin bug adults froze and died at -10.4℃, and similarly, their larger juvenile stages freeze at -11.0℃. Freshly hatched harlequin bugs and unhatched eggs froze at considerably lower temperatures with eggs forming ice crystals at -23.2℃ and recent hatches at -21.6℃. Now with an understanding of how harlequin bugs likely survive winter extreme, we can then work on developing a trap to tally their populations in the spring and predict summer and fall pest severity. In the lab and field, harlequin bug adults and large nymphs were more likely found on green and black colors, and statistically less frequently on yellow, white, purple or red colors with the exception of adult females, which were most attracted to red and green in the lab, but green and black in the field. To increase harlequin bug attraction to and termination at traps square corrugated plastic panels were wrapped with an insecticide netting and baited with harlequin bug aggregation pheromone, murgantiol. Bugs were effectively drawn to the panels, with green panels having significantly more dead harlequin bugs and fewer dead beneficial lady beetles (Coleoptera: Coccinellidae) at their base than yellow panels. Thus, green was chosen as the ideal trap color to use for another field experiment that evaluated three trap types – a corrugated plastic square panel, pyramidal trap, and ramp trap – each with three lure treatments, murgantiol alone or murgantiol plus a low or high rate of mustard oil. More bugs were killed with the pyramidal trap than with the panel trap or the ramp trap, and more bugs were killed at traps containing murgantiol combined with benzyl isothiocyanate than at those with murgantiol alone. This research demonstrated that with the proper visual elements and odors, harlequin bugs can be drawn to traps and effectively killed after contact with insecticide-incorporated netting.
|
Page generated in 0.0607 seconds