• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Possible Catecholaminergie-Opioidergic Control of Blood Pressure During Muscular Contraction

Williams, Carole A., Blevins, Lewis S., Paul, Daniel J. 01 January 1987 (has links)
Summary: The effects of an alpha2 adrenoceptor blocker, yohimbine, and an alpha1 adrenoceptor blocker, phenoxybenzamine, and the central alpha2 adrenoceptor agonist, clonidine, on changes in arterial blood pressure and heart rate were studied during fatiguing muscular contractions to determine whether an adrenergic-opioidergic system might be involved in the mediation of cardiovascular function. Fatiguing contractions of the gastrocnemius and plantaris muscles of cats caused an increase in mean arterial blood pressure to 150-170 mmHg from resting values of 110-120 mmHg. Injection of clonidine into the cerebral aqueduct eliminated the increase in blood pressure; this effect was dose dependent. Naloxone antagonised the effects of the highest dose of clonidine (5 μg). Injections of yohimbine (1 μg) into the cerebral aqueduct had no significant effect on this pressor response. Yohimbine (1 μg) effectively counteracted the antipressor effects of clonidine when the two drugs were injected together until higher doses of clonidine (2-5 μg) were used. Phenoxybenzamine had no effect on the pressor response itself but unlike yohimbine was able to attenuate the effects of clonidine only when injected together. These data suggest that activation of muscle ergoreceptor afferent nerve fibres (group III and IV fibres) during muscular contractions may cause an increase in arterial blood pressure by interfering with an inhibitory adrenergic-endorphinergic pathway in the medullary region of the brainstem.

Page generated in 0.0845 seconds