Spelling suggestions: "subject:"muscle differentiation""
1 |
Studying the Molecular Mechanisms for Generating Progenitor Cells during Tail Regeneration in Ambystoma mexicanum / Studien der molekularen Mechanismen zur Herstellung von Vorläuferzellen während der Schwanzregeneration in Ambystoma mexicanumSchnapp, Esther 10 May 2005 (has links) (PDF)
The present thesis is a contribution to unravel the molecular mechanisms that underlie urodele regeneration. Urodele amphibians (newts and salamanders) are among the few vertebrates with the remarkable ability to regenerate lost body appendages, like the limbs and the tail. Urodele tail and limb regeneration occurs via blastemal epimorphic regeneration. A blastema is a mound of progenitor cells that accumulates at the amputation plane and eventually gives rise to the missing structures. It is known today that dedifferentiating muscle fibers at the amputation plane contribute to the blastema cell pool, but how this process occurs on the cellular and molecular level is hardly understood, which is in part due to the lack of molecular methods to test gene function in urodeles. Furthermore, little is known about how coordinated growth and patterning occurs during urodele regeneration, and if the patterning mechanisms in regeneration are related to the ones in development. The goal of this study was to better understand these processes on the molecular level. To address these questions, I first established several methods in our model systems, which are the mexican salamander Ambystoma mexicanum (axolotl) and a cell line derived from the newt Notophthalmus viridescens. In order to monitor gene expression on a cellular level during regeneration, I worked out a good in situ hybridization protocol on axolotl tissue cryosections. To be able to test gene function, I established electroporation conditions to both overexpress genes in the cultured newt cells and to deliver morpholinos into axolotl cells in vivo and newt cells in culture. I demonstrate here that morpholinos are an effective tool to downregulate protein expression in urodele cells in vivo and in culture. Testing the role of two candidate genes in muscle fiber dedifferentiation, the homeobox containing transcription factor Msx1 and Rad, a GTP-binding protein of a new Ras-related protein family, revealed that neither seems to play a major role in muscle dedifferentiation, both in culture and in vivo. In addition to testing gene function I have examined the muscle dedifferentiation process in more detail. I show here that dedifferentiating muscle fiber nuclei undergo morphological changes that are likely due to chromatin remodeling events. I also demonstrate that the axolotl spinal cord expresses embryonic dorsoventral (d/v) patterning markers of the neural tube. The transcription factors Msx1, Pax7 and Pax6 are expressed in their respective d/v domains in both the differentiated and the regenerating axolotl spinal cord. Furthermore, the secreted signaling molecule sonic hedgehog (Shh) is expressed in the floor plate in both the differentiated and the regenerating cord. Using a chemical inhibitor (cyclopamine) and an activator of the hedgehog pathway, I discovered that hedgehog signaling is required for overall tail regeneration. Blocking hedgehog signaling does not only result in d/v patterning defects of the regenerating spinal cord, but it also strongly reduces blastema cell proliferation. In addition, I identified cartilage and putative muscle progenitor cells in the blastema, marked by the expression of the transcription factors Sox9 and Pax7, respectively. Both progenitor populations are reduced in the blastema in the absence of hedgehog signaling. The continuous expression of marker genes for embryonic progenitor cell domains in the mature axolotl may be related to their ability to regenerate.
|
2 |
Studying the Molecular Mechanisms for Generating Progenitor Cells during Tail Regeneration in Ambystoma mexicanumSchnapp, Esther 09 June 2005 (has links)
The present thesis is a contribution to unravel the molecular mechanisms that underlie urodele regeneration. Urodele amphibians (newts and salamanders) are among the few vertebrates with the remarkable ability to regenerate lost body appendages, like the limbs and the tail. Urodele tail and limb regeneration occurs via blastemal epimorphic regeneration. A blastema is a mound of progenitor cells that accumulates at the amputation plane and eventually gives rise to the missing structures. It is known today that dedifferentiating muscle fibers at the amputation plane contribute to the blastema cell pool, but how this process occurs on the cellular and molecular level is hardly understood, which is in part due to the lack of molecular methods to test gene function in urodeles. Furthermore, little is known about how coordinated growth and patterning occurs during urodele regeneration, and if the patterning mechanisms in regeneration are related to the ones in development. The goal of this study was to better understand these processes on the molecular level. To address these questions, I first established several methods in our model systems, which are the mexican salamander Ambystoma mexicanum (axolotl) and a cell line derived from the newt Notophthalmus viridescens. In order to monitor gene expression on a cellular level during regeneration, I worked out a good in situ hybridization protocol on axolotl tissue cryosections. To be able to test gene function, I established electroporation conditions to both overexpress genes in the cultured newt cells and to deliver morpholinos into axolotl cells in vivo and newt cells in culture. I demonstrate here that morpholinos are an effective tool to downregulate protein expression in urodele cells in vivo and in culture. Testing the role of two candidate genes in muscle fiber dedifferentiation, the homeobox containing transcription factor Msx1 and Rad, a GTP-binding protein of a new Ras-related protein family, revealed that neither seems to play a major role in muscle dedifferentiation, both in culture and in vivo. In addition to testing gene function I have examined the muscle dedifferentiation process in more detail. I show here that dedifferentiating muscle fiber nuclei undergo morphological changes that are likely due to chromatin remodeling events. I also demonstrate that the axolotl spinal cord expresses embryonic dorsoventral (d/v) patterning markers of the neural tube. The transcription factors Msx1, Pax7 and Pax6 are expressed in their respective d/v domains in both the differentiated and the regenerating axolotl spinal cord. Furthermore, the secreted signaling molecule sonic hedgehog (Shh) is expressed in the floor plate in both the differentiated and the regenerating cord. Using a chemical inhibitor (cyclopamine) and an activator of the hedgehog pathway, I discovered that hedgehog signaling is required for overall tail regeneration. Blocking hedgehog signaling does not only result in d/v patterning defects of the regenerating spinal cord, but it also strongly reduces blastema cell proliferation. In addition, I identified cartilage and putative muscle progenitor cells in the blastema, marked by the expression of the transcription factors Sox9 and Pax7, respectively. Both progenitor populations are reduced in the blastema in the absence of hedgehog signaling. The continuous expression of marker genes for embryonic progenitor cell domains in the mature axolotl may be related to their ability to regenerate.
|
3 |
Purification of A Serum Factor That Triggers Cell Cycle Re-entry In Differentiated Newt Myotubes / Aufreinigung eines Serumfactors, welcher den Zellzyklus-Wiedereintritt in differenzierten Salamander-Muskelzellen steuertStraube, Werner 30 November 2006 (has links) (PDF)
In contrast to mammals, some fish and amphibians have retained the ability to regenerate complex body structures or organs, such as the limb, the tail, the eye lens or even parts of the heart. One major difference in the response to injury is the appearance of a mesenchymal growth zone or blastema in these regenerative species instead of the scarring seen in mammals. This blastema is thought to largely derive from the dedifferentiation of various functional cell types, such as skeletal muscle, skin and cartilage. In the case of multinucleated skeletal muscle fibres, cell cycle re-entry into S-phase as well as fragmentation into mononucleated progenitors is observed both in vitro and in vivo. In order to identify molecules that initiate dedifferentiation of cells at the wound site in amphibians we have established a cellular assay with a cultured newt myogenic cell line. Using this assay we have found a serum activity that stimulates cell cycle re-entry in differentiated multinucleated newt myotubes. The activity is present in serum of all mammalian species tested so far and, interestingly, thrombin proteolysis amplifies the activity from both serum and plasma. We think this serum factor provides a link between wounding and regeneration and its identification will be a key step in understanding the remarkable differences in wound healing between mammals and amphibians. In the course of this PhD thesis we have characterized the serum factor as a thermo-labile, pH- and proteinase K-sensitive, high molecular weight protein that is resistant to denaturing conditions such as SDS, urea or organic solvents. Surprisingly, under denaturing conditions the activity behaves as a low molecular weight protein that displays charge heterogeneity on isoelectric focusing. Using these characteristics of the serum factor we have performed a systematic investigation of commonly used protein chromatography modes and separation techniques to develop a successful purification procedure. After four column chromatography steps -- cation exchange, hydrophobic interaction, heparin affinity and size exclusion chromatography under denaturing conditions -- we have achieved a 2,000-fold purification starting from a commercially available Crude Bovine Thrombin preparation. This represents about 40,000-fold purification over bovine serum. Silver stained gels of the most purified fractions revealed ten major protein bands. In order to finally identify the cell cycle re-entry factor, we are currently analyzing the purification by quantitative mass spectrometry by correlating the abundance of tryptic peptides with activity in sequential fractions across a chromatography run.
|
4 |
Purification of A Serum Factor That Triggers Cell Cycle Re-entry In Differentiated Newt MyotubesStraube, Werner 26 June 2006 (has links)
In contrast to mammals, some fish and amphibians have retained the ability to regenerate complex body structures or organs, such as the limb, the tail, the eye lens or even parts of the heart. One major difference in the response to injury is the appearance of a mesenchymal growth zone or blastema in these regenerative species instead of the scarring seen in mammals. This blastema is thought to largely derive from the dedifferentiation of various functional cell types, such as skeletal muscle, skin and cartilage. In the case of multinucleated skeletal muscle fibres, cell cycle re-entry into S-phase as well as fragmentation into mononucleated progenitors is observed both in vitro and in vivo. In order to identify molecules that initiate dedifferentiation of cells at the wound site in amphibians we have established a cellular assay with a cultured newt myogenic cell line. Using this assay we have found a serum activity that stimulates cell cycle re-entry in differentiated multinucleated newt myotubes. The activity is present in serum of all mammalian species tested so far and, interestingly, thrombin proteolysis amplifies the activity from both serum and plasma. We think this serum factor provides a link between wounding and regeneration and its identification will be a key step in understanding the remarkable differences in wound healing between mammals and amphibians. In the course of this PhD thesis we have characterized the serum factor as a thermo-labile, pH- and proteinase K-sensitive, high molecular weight protein that is resistant to denaturing conditions such as SDS, urea or organic solvents. Surprisingly, under denaturing conditions the activity behaves as a low molecular weight protein that displays charge heterogeneity on isoelectric focusing. Using these characteristics of the serum factor we have performed a systematic investigation of commonly used protein chromatography modes and separation techniques to develop a successful purification procedure. After four column chromatography steps -- cation exchange, hydrophobic interaction, heparin affinity and size exclusion chromatography under denaturing conditions -- we have achieved a 2,000-fold purification starting from a commercially available Crude Bovine Thrombin preparation. This represents about 40,000-fold purification over bovine serum. Silver stained gels of the most purified fractions revealed ten major protein bands. In order to finally identify the cell cycle re-entry factor, we are currently analyzing the purification by quantitative mass spectrometry by correlating the abundance of tryptic peptides with activity in sequential fractions across a chromatography run.
|
Page generated in 0.1099 seconds