• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification and characterization of type III effector proteins in plant-associated bacteria

Thomas, William J. 04 May 2012 (has links)
Symbioses between microbes and multicellular eukaryotes are found in all biomes, and encompass a spectrum of symbiotic lifestyles that includes parasitism and disease, commensalism, and mutually beneficial interdependent host-microbe relationships. Regardless of outcome, these symbiotic lifestyles are governed by a complex molecular "courtship" between microbe and potential host. This courtship is the primary determinant of the host range of a given microsymbiont. Host immunity poses a formidable barrier to the establishment of host-microbe relationships, and the majority of microbial suitors will be thwarted by it. Only by successfully "wooing" the host cell's immune defenses with the appropriate molecular signals can a microsymbiont successfully colonize its host. A strategy common to microsymbionts across the spectrum of symbiotic lifestyles and host organisms is the delivery of microbial-encoded effector proteins into the cytoplasm of host cells to manipulate the host cell's molecular machinery for the purposes of subverting host immunity. Bacteria, in particular, have adapted a number of secretion systems for this purpose. The most well-characterized of these is the type III secretion system (T3SS), a molecular apparatus that specializes in injecting type III effector (T3Es) proteins directly into host cells. The work in this thesis focuses on T3Es of plant-associated bacteria, with particular emphasis on mutualistic bacteria. We present evidence that collections of T3Es from Sinorhizobium fredii and Bradyrhizobium japonicum are, in stark contrast to those of phytopathogenic bacteria, in a co-evolutionary equilibrium with their hosts. This equilibrium is characterized by highly conserved T3E collections consisting of many "core" T3Es with little variation in nucleotide sequence. The T3Es of Mesorhizobium loti MAFF303099 suggest a completely different picture of the evolution of T3Es. MAFF303099 recently acquired its T3SS locus, and the work in this thesis provides an evolutionary snapshot of a mutualist that is innovating a T3E collection primarily through horizontal gene transfer. Collectively, this work represents the first comprehensive catalog of T3Es of rhizobia and, in the case of Sinorhizobium and Bradyrhizobium, the first evidence of purifying selection for T3Es. / Graduation date: 2012
2

THE ROLE OF BACTERIAL ROOT ENDOPHYTES IN TOMATO GROWTH AND DEVELOPMENT

Tri Tien Tran (14212937) 17 May 2024 (has links)
<p>  </p> <p>Plant roots form an intimate relationship with a diversity of soil microorganisms. Some soil-borne microbes cause harmful diseases on crops, but others promote plant growth and enhance host resilience against stressors. Beneficial bacteria have a high potential as a strategy for sustainable agricultural management, many of which have been recognized and commercialized for improving crop growth. Unfortunately, field inoculants of beneficial bacteria often give inconsistent results due to various environmental factors hindering their beneficial properties. Improving crop production utilizing beneficial bacteria requires two approaches: 1) breeding for crops with the enhanced association for beneficial bacteria and 2) improving formulation methods for producing more potent microbial products. To contribute to these goals, we address three critical questions utilizing the tomato root microbiome as a model system. First, we asked how beneficial root-associated bacteria could be efficiently identified. We developed a strategy to select beneficial bacteria from a novel collection of 183 bacterial endophytes isolated from roots of two field-grown tomato species. The results suggest that isolates with similar traits impact plant growth at the same levels, regardless of their taxonomic classification or host origin. Next, we asked whether host genetics contribute to the root microbiome assembly and response to beneficial microbes. An assessment of the root microbiome profile and plant binary interaction experiments suggested the role of host genetics in influencing root recruitment and response to beneficial bacteria. Subsequently, we asked whether root-associated bacteria induce physiological changes in root tissues in the host. We identified two isolates from our bacterial endophyte collection that significantly promoted the growth of tomato genotype H7996 (<em>Solanum lycopersicum</em>). Plant-binary interaction experiments suggested a significant increase of cell wall lignification in the root vasculature starting 96-hour post-inoculation with beneficial bacteria. Additional studies are needed to uncover a possible correlation between the induced vasculature lignification and the growth-promoting effects of the two isolates on H7996. Altogether, our findings highlight the multi-faceted role of root-associated bacteria in promoting plant growth and support the development of crop improvement strategies in optimizing host association with soil bacteria.</p>

Page generated in 0.0726 seconds