• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reanalysis of the 1954-1963 Atlantic Hurricane Seasons

Delgado, Sandy 01 July 2014 (has links)
HURDAT is the main historical archive of all tropical storms and hurricanes in the North Atlantic Basin, which includes the Caribbean Sea and Gulf of Mexico, from 1851 to the present. HURDAT is maintained and updated annually by the National Hurricane Center at Miami, Florida. Today, HURDAT is widely used by research scientists, operational hurricane forecasters, insurance companies, emergency managers and others. HURDAT contains both systematic biases and random errors. Thus, the reanalysis of HURDAT is vital. For this thesis, HURDAT is reanalyzed for the period of 1954-1963. The track and intensity of each existing tropical cyclone in HURDAT is assessed in the light of 21st century understanding and previously unrecognized tropical cyclones are detected and analyzed. The resulting changes will be recommended to the National Hurricane Center Best Track Change Committee for inclusion in HURDAT.
2

Brightness Temperature Calibration Of Sac-d/aquarius Microwave Radiometer (mwr)

Biswas, Sayak Krishna 01 January 2012 (has links)
The Aquarius/SAC-D joint international science mission, between the National Aeronautics and Space Administration (NASA) of United States and the Argentine Space Agency (Comision Nacional de Actividades Espaciales, CONAE), was launched on a polarorbiting satellite on June 10, 2011. This mission of discovery will provide measurements of the global sea surface salinity, which contributes to understanding climatic changes in the global water cycle and how these variations influence the general ocean circulation. The Microwave Radiometer (MWR), a three channel Dicke radiometer operating at 23.8 GHz H-Pol and 36.5 GHz V-& H-Pol provided by CONAE, will complement Aquarius (NASA’s L-band radiometer/scatterometer) by providing simultaneous spatially collocated environmental measurements such as water vapor, cloud liquid water, surface wind speed, rain rate and sea ice concentration. This dissertation focuses on the overall radiometric calibration of MWR instrument. Which means establishing a transfer function that relates the instrument output to the antenna brightness temperature (Tb). To achieve this goal, the dissertation describes a microwave radiative transfer model of the instrument and validates it using the laboratory and thermal-vacuum test data. This involves estimation of the losses and physical temperature profile in the path from the receiver to each antenna feed-horn for all the receivers. As the pre-launch laboratory tests can only provide a simulated environment which is very different from the operational environment in space, an on-orbit calibration of the instrument is very important. Inter-satellite radiometric cross-calibration of MWR using the Naval Research iii Laboratory’s multi-frequency polarimetric microwave radiometer, WindSat, on board the Coriolis satellite is also an important part of this dissertation. Cross-calibration between two different satellite instruments require normalization of Tb’s to account for the frequency and incidence angle difference between the instruments. Also inter-satellite calibration helps to determine accurate antenna pattern correction coefficients and other small instrument biases.
3

A Phenomenological Study of the Impacts of Morale Welfare and Recreation (MWR) on Soldiers During Operation Iraqi Freedom (OIF)

Phillips, Noelle Veronica 27 March 2006 (has links)
No description available.

Page generated in 0.0432 seconds