Spelling suggestions: "subject:"mya"" "subject:"my09""
1 |
Messung der Longitudinal-Polarisation der Positronen aus dem Zerfall positiver Myonen /Mahler, Hansjuerg. Mahler, Hansjürg. January 1900 (has links)
Abhandl. Naturwiss. ETH Zürich, 198?
|
2 |
Entwicklung einer Methode zur Rekonstruktion der Energie von Myonen mit dem Baikal-Neutrinoteleskop NT-96Streicher, Ole. January 2001 (has links) (PDF)
Berlin, Freie Universiẗat, Diss., 2001.
|
3 |
<>.Tripet, Angèle. January 2003 (has links) (PDF)
Bielefeld, Univ., Diss., 2003. / Computerdatei im Fernzugriff.
|
4 |
<>.Tripet, Angèle. January 2003 (has links) (PDF)
Bielefeld, Univ., Diss., 2003. / Computerdatei im Fernzugriff.
|
5 |
Identification of muon-induced signals in the deep underground neutrino-scintillation-detector BorexinoLendvai, Christian. Unknown Date (has links)
Techn. University, Diss., 2005--München.
|
6 |
The exclusive production of r0 [rho 0] mesons in polarized muon nucleon scattering within the SMC experiment at CERNTripet, Angèle. January 2003 (has links) (PDF)
Bielefeld, University, Diss., 2003.
|
7 |
Messungen und Rechnungen zu strukturmechanischen Fragen im Alignmentsystem von ATLAS und DATCHARolker, Bernd. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Freiburg (Breisgau).
|
8 |
Using spin polarised positive muons for studying guest molecule partitioning in soft matter structuresMartyniak-Stronczek, Aleksandra. January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
|
9 |
Präzisionsmessungen an Myondriftkammern für den CMS-Detektor und die Bedeutung des Myonsystems für die Higgs-Suche am LHCHermann, Sven. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2004--Aachen.
|
10 |
Muon performance aspects and measurement of the inclusive ZZ production cross section through the four lepton final state with the ATLAS experiment at the LHC / Aspekte der Leistungsfähigkeit des Myonnachweises und Messung des inklusiven ZZ Wirkungsquerschnitts mittels des Vier-Lepton-Endzustands mit dem ATLAS Experiment am LHCMeyer, Jochen January 2012 (has links) (PDF)
The "Large Hadron Collider" (LHC) is currently the most powerful particle accelerator. It provides particle collisions at a center of mass energy in the Tera-electronvolt range, which had never been reached in a laboratory before. Thereby a new era in high energy particle physics has began. Now it is possible to test one of the most precise theories in physics, the Standard Model of particle physics, at these high energies. The purpose is particularly served by four large experiments installed at the LHC, namely "A Toroidal LHC ApparatuS" (ATLAS), the "Compact-Muon-Solenoid" (CMS), the "Large Hadron Collider beauty" (LHCb) and "A Large Ion Collider Experiment" (ALICE). Besides exploring the high energy behavior of the well-established portions of the Standard Model, one of the main objectives is to find the Higgs boson included in the model, but not discovered by any preceding effort. It is of tremendous importance since fermions and heavy electroweak gauge bosons acquire mass because of this boson. Although the success of the Standard Model in describing nature is already undisputed, there are some flaws due to observations inexplicable within this theory only. Therefore searches for physics beyond the Standard Model are promoted at the LHC experiments as well. In order to achieve the defined goals, crucial aspects are firstly precise measurements, to verify Standard Model predictions in detail, and secondly an evaluation of as much information as accessible by the detectors, to recognize new phenomena as soon as possible for subsequent optimizations. Both challenges are only possible with a superior understanding of the detectors. An inevitable contribution to attain this knowledge is a realistic simulation, partially requiring new implementation techniques to describe the very complex instrumentation. The research presented here is performed under the patronage of the ATLAS collaboration with a special focus on measurements done with muon spectrometer. Thus a first central issue is the performance of the spectrometer in terms of physics objects that are recognized by the device, the compatibility of data and the existing simulation as well as its improvement and finally the extension of the acceptance region. Once the excellent behavior and comprehension of the muon spectrometer is demonstrated, a second part addresses one physics use case of reconstructed muons. The electroweak force is part of the Standard Model and causes the interaction of heavy electroweak gauge bosons with fermions as well as their self-interaction. In proton-proton collisions such gauge bosons are produced. However, they decay immediately into a pair of fermions. In case of the Z boson, which is one of the gauge bosons, oppositely charged fermions of the same generation, including muons, emerge. The various decay modes are determined precisely at particle accelerators other than the LHC. However, the associated production of two Z bosons is measured less exactly at those facilities because of a very low cross section. The corresponding results acquired with the ATLAS experiment exceed all previous measurements in terms of statistics and accuracy. They are reported in this thesis as obtained from the observation of events with four charged leptons. The enhancement of the signal yield based on the extension of the muon spectrometer acceptance is especially emphasized as well as alternative methods to estimate background events. Furthermore, the impact on the probing of couplings of three Z bosons and intersection with the search for the Standard Model Higgs boson are pointed out. / Der "Large Hadron Collider" (LHC) ist der leistungsfähigste Teilchenbeschleuniger unserer Tage. Der Ringbeschleuniger erzeugt Teilchenkollisionen bei einer nie zuvor in einem Labor erreichten Schwerpunktenergie im Bereich von Teraelektronenvolt. Damit hat eine neue Ära in der Hochenergie-Teilchenphysik begonnen, in der eine der präzisesten Theorien der Physik, das Standardmodell der Teilchenphysik, bei diesen hohen Energien überprüft werden kann. Diesem Zweck dienen insbesondere die vier großen Experimente, "A Toroidal LHC ApparatuS" (ATLAS), "Compact-Muon-Solenoid" (CMS), "Large Hadron Collider beauty" (LHCb) und "A Large Ion Collider Experiment" (ALICE), welche am LHC aufgebaut sind. Neben der Erkundung des Hochenergieverhaltens der etablierten Bestandteile des Standardmodells, ist es ein Hauptanliegen das in dem Modell enthaltene Higgs Boson zu finden, welches bei allen bisherigen Bemühungen nicht nachgewiesen werden konnte. Dem Boson kommt eine wichtige Rolle zu, denn es erlaubt eine Erklärung der Massen von Fermionen und von schweren, elektroschwachen Eichbosonen. Obgleich der Erfolg des Standardmodells in seiner Beschreibung der Natur unumstritten ist, gibt es Schwachpunkte aufgrund von Beobachtungen, die die Existenz bislang unentdeckter Teilchen und Wechselwirkungen andeuten. Aus diesem Grund werden zudem Suchen nach Physik jenseits des Standardmodells von den LHC Experimenten betrieben. Um die ausgewiesenen Ziele zu erreichen, sind wesentliche Aspekte zum einen Präzisionsmessungen, um die Vorhersagen des Standardmodells eingehend zu testen, und zum anderen eine Auswertung aller mit den Detektoren zugänglichen Informationen, um Phänomene neuer Physik früh zu erkennen und Analysen daraufhin zu optimieren. Beide Herausforderungen gehen einher mit einem ausgezeichneten Verständnis der Detektoren. Einen unumgänglichen Beitrag dieses Wissen zu erlangen leistet eine realitätsgetreue Simulation, die teilweise neuer Techniken der Implementierung bedarf, um die komplexen Messanlagen zu beschreiben. Die hier präsentierte Forschungsarbeit wurde im Rahmen der ATLAS Kollaboration durchgeführt, wobei ein besonderer Schwerpunkt auf Messungen des Myon-Spektrometers liegt. Daher ist ein erstes zentrales Thema die Leistungsfähigkeit des Spektrometers hinsichtlich der von ihm identifizierten physikalischen Objekte, die Verträglichkeit aufgenommener Daten mit der existierenden Simulation sowie deren Verbesserung und schließlich die Erweiterung des Akzeptanzbereichs. Nachdem das exzellente Verhalten und Verständnis des Myon-Spektrometers demonstriert ist, befasst sich ein zweiter Teil mit einem physikalischen Anwendungsbereich gefundener Myonen. Die elektroschwache Kraft ist Teil des Standardmodells und verursacht die Wechselwirkung der schweren, elektroschwachen Eichbosonen mit Fermionen sowie ihre Selbstwechselwirkung. In Proton-Proton Kollisionen werden solche Bosonen produziert, die jedoch sofort wieder in ein Fermionen-Paar zerfallen. Im Falle des Z Bosons, welches solch ein Eichboson ist, entstehen entgegengesetzt geladene oder neutrale Fermionen der selben Generation, darunter auch Myonen. Die verschiedenen Zerfallsmodi sind bereits an anderen Beschleunigern als dem LHC bestimmt worden. Die gleichzeitige Produktion zweier Z Bosonen wurde jedoch aufgrund des sehr kleinen Wirkungsquerschnittes weniger exakt an diesen Einrichtungen gemessen. Die entsprechenden, mit dem ATLAS Experiment gewonnenen Resultate, übersteigen alle vorherigen Messungen hinsichtlich ihrer Statistik und Genauigkeit. Wie sie aus beobachteten Ereignissen mit vier geladenen Leptonen gewonnen werden, ist in dieser Arbeit ausgeführt. Besonders betont wird die gesteigerte Signalaufnahme durch die Erweiterung des Akzeptanzbereichs des Myon-Spektrometers sowie alternative Methoden zur Abschätzung von Untergrundereignissen. Außerdem werden Auswirkungen auf die Erforschung von Kopplungen dreier Z Bosonen sowie Überschneidungen mit der Suche nach dem Higgs Boson des Standardmodells erläutert.
|
Page generated in 0.0526 seconds