Spelling suggestions: "subject:"mycelial.""
1 |
Biosynthesis and biodegradation of aflotoxin by Asperigillus flavus 102566Hamid, A. B. January 1986 (has links)
No description available.
|
2 |
The whiD locus of Streptomyces coelicolorA3(2)Palframan, Wendy Jane January 1998 (has links)
No description available.
|
3 |
Effect of carbon source (carbohydrate) on the chemical structure of water-soluble mushroom polysaccharides produced by submerged fermentation.January 2005 (has links)
Wong Ka-kei. / Thesis submitted in: December 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 123-139). / Abstracts in English and Chinese. / THESIS COMMITTEE --- p.i / ACKNOWNLEDGEMENT --- p.ii / ABSTRACT (ENGLISH VERSION) --- p.iii / ABSTRACT (CHINESE VERSION) --- p.v / LIST OF TABLES --- p.ix / ABBREVIATIONS --- p.xiii / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Edible mushrooms --- p.1 / Chapter 1.1.1 --- Classification and terminology --- p.1 / Chapter 1.1.2 --- Mode of nutrition --- p.3 / Chapter 1.1.3 --- World consumption --- p.3 / Chapter 1.1.4 --- Nutritional values of edible mushroom --- p.6 / Chapter 1.1.5 --- Medicinal values of mushrooms --- p.7 / Chapter 1.2 --- Mushroom mycelium --- p.11 / Chapter 1.2.1 --- Uses and applications --- p.11 / Chapter 1.2.2 --- Submerged fermentation (SmF) --- p.12 / Chapter 1.2.3 --- Factors affecting the growth of mycelium in submerged fermentation --- p.14 / Chapter 1.2.3.1 --- Nutritional requirements - Carbon sources --- p.14 / Chapter 1.2.3.2 --- Nutritional requirements ´ؤ Nitrogen sources --- p.16 / Chapter 1.2.3.3 --- Nutritional requirements ´ؤ Minerals --- p.16 / Chapter 1.2.3.4 --- Environmental factors ´ؤ Temperature --- p.17 / Chapter 1.2.3.5 --- Environmental factors - Aeration --- p.17 / Chapter 1.2.3.6 --- Environmental factors - Agitation --- p.18 / Chapter 1.2.4 --- Optimization of growth of mycelium and production of EPS --- p.18 / Chapter 1.3 --- Mushroom polysaccharides --- p.21 / Chapter 1.3.1 --- Biologically active mushroom polysaccharides --- p.21 / Chapter 1.3.2 --- Chemical structures of mushroom polysaccharides --- p.21 / Chapter 1.3.2.1 --- β-glucans --- p.23 / Chapter 1.3.2.2 --- α-glucans --- p.25 / Chapter 1.3.2.3 --- Mannans --- p.26 / Chapter 1.3.2.4 --- Protein-bound polysaccharides --- p.26 / Chapter 1.3.2.5 --- Other heteroglycans --- p.28 / Chapter 1.4 --- Mushrooms under investigation --- p.28 / Chapter 1.4.1 --- Pleurotus tuber-regium (Fr.) Sing. (PTR) --- p.28 / Chapter 1.4.2 --- Agrocybe cylindracea (AC) --- p.30 / Chapter 1.4.3 --- Grifola frondosa (GF) --- p.31 / Chapter 1.5 --- Objectives and experimental design --- p.32 / Chapter CHAPTER 2 --- MATERIALS AND METHODS --- p.35 / Chapter 2.1 --- Source of mushroom mycelium --- p.35 / Chapter 2.2 --- Effect of different carbon sources on submerged fermentation --- p.37 / Chapter 2.2.1 --- Production of mycelium by submerged fermentation using 250 mL and 1L shake-flasks --- p.37 / Chapter 2.2.2 --- Scale-up production of mycelium of PTR using fermentor --- p.39 / Chapter 2.2.3 --- Concentration of dissolved oxygen in 250 mL and 1L shake-flasks. --- p.39 / Chapter 2.3 --- Isolation and fractionation of mushroom polysaccharides --- p.40 / Chapter 2.3.1 --- Isolation of exo-polysaccharides (EPS) from culture medium by ethanol precipitation --- p.40 / Chapter 2.3.2 --- Isolation of EPS from culture medium by ultra-filtration --- p.40 / Chapter 2.3.3 --- Hot water extraction of PTR mycelium --- p.41 / Chapter 2.3.4 --- Fractionation of HWE by fractional ethanol precipitation --- p.41 / Chapter 2.4 --- Chemical composition of HWE and EPS --- p.42 / Chapter 2.4.1 --- Phenol-sulphuric acid method --- p.42 / Chapter 2.4.2 --- Modified Lowry method --- p.43 / Chapter 2.4.3 --- Monosaccharide composition analysis of HWE and EPS --- p.43 / Chapter 2.4.3.1 --- Acid depolymerization --- p.43 / Chapter 2.4.3.2 --- Neutral sugar derivatization --- p.44 / Chapter 2.4.3.3 --- Determination of neutral sugar composition by gas chromatography (GC) --- p.45 / Chapter 2.4.3.4 --- Uronic acid content --- p.46 / Chapter 2.5 --- Structural studies of HWE and EPS --- p.47 / Chapter 2.5.1 --- High Pressure Liquid Chromatography (HPLC) --- p.47 / Chapter 2.5.2 --- Methylation study and gas chromatography- mass spectrometry (GC-MS) --- p.48 / Chapter 2.5.2.1 --- Preparation of dry dimethyl sulfoxide (DMSO) --- p.48 / Chapter 2.5.2.2 --- Preparation of methylsulfinyl methyl sodium (CH3SOCH2-Na+) --- p.48 / Chapter 2.5.2.3 --- Methylation --- p.49 / Chapter 2.5.2.4 --- Extraction of methylated polysaccharide --- p.49 / Chapter 2.5.2.5 --- Acid depolymerization and preparation of aditol acetate derivatives --- p.50 / Chapter 2.5.2.6 --- Determination of partially methylated alditol acetates (PMAAs) by gas chromatography-mass spectrometry (GC-MS) --- p.50 / Chapter CHAPTER 3 --- RESULTS AND DISCUSSION --- p.51 / Chapter 3.1 --- "Production of mycelium and EPS of PTR, AC and GF by submerged fermentation in 250 mL shake-flask with liquid medium containing different carbon sources" --- p.51 / Chapter 3.1.1 --- "Mycelial biomass production of PTR, AC and GF" --- p.51 / Chapter 3.1.2 --- "Production of EPS of PTR, AC and GF" --- p.57 / Chapter 3.1.3 --- "Characterization of EPS of PTR, AC and GF" --- p.62 / Chapter 3.1.3.1 --- Carbohydrate and protein content --- p.62 / Chapter 3.1.3.2 --- Monosaccharide composition --- p.67 / Chapter 3.1.4 --- Summary --- p.72 / Chapter 3.2 --- "Production of mycelium, EPS of PTR by submerged fermentation in 1L shake-flask and 8L fermentor with liquid medium containing different carbon sources" --- p.75 / Chapter 3.2.1 --- Mycelial production of PTR --- p.75 / Chapter 3.2.2 --- EPS Production of PTR --- p.80 / Chapter 3.2.3 --- Chemical characteristics of EPS of PTR --- p.83 / Chapter 3.2.3.1 --- Carbohydrate and protein content --- p.83 / Chapter 3.2.3.2 --- Monosaccharide composition --- p.85 / Chapter 3.2.4 --- Structural characteristics of EPS of PTR --- p.87 / Chapter 3.2.4.1 --- Molecular weight of EPS of PTR by HPLC --- p.87 / Chapter 3.2.4.2 --- Glycosyl linkages of EPS of PTR by GC-MS of PMAA --- p.90 / Chapter 3.2.5 --- Summary --- p.93 / Chapter 3.3 --- Hot water extraction of mycelium of PTR from the scale-up submerged fermentation in 1L shake-flask and 8L fermentor with liquid medium containing different carbon sources --- p.95 / Chapter 3.3.1 --- Yield of hot water extract (HWE) of mycelium of PTR --- p.95 / Chapter 3.3.2 --- Chemical characteristics of HWE of PTR --- p.101 / Chapter 3.3.2.1 --- Carbohydrate and protein content --- p.101 / Chapter 3.3.2.2 --- Monosaccharide composition --- p.104 / Chapter 3.3.3 --- Structural characteristics of HWE of PTR --- p.112 / Chapter 3.3.3.1 --- Molecular weight of HWE of PTR by HPLC --- p.112 / Chapter 3.3.3.2 --- Glycosyl linkages of HWE of PTR by GC-MS ofPMAA --- p.116 / Chapter 3.3.4 --- Summary --- p.119 / Chapter CHAPTER 4 --- CONCLUSIONS AND FUTURE WORKS --- p.120 / Chapter 4.1 --- Conclusions --- p.120 / Chapter 4.2 --- Future works --- p.121 / REFERENCES --- p.123
|
4 |
Basidiomycete linear mycelial structures as nutrient absorbing and translocating organs in soilCairney, John W. G. January 1986 (has links)
No description available.
|
5 |
Vliv růstových látek na mycelium Psalliota campestria, žampionu pravéhoHáva, Karel January 1900 (has links)
No description available.
|
6 |
Charakteristika mykorhizních poměrů v oblasti horských smrčin KrkonošHomolka, Pavel January 2011 (has links)
No description available.
|
7 |
MYCELIUM BUILDINGJondelius, Olof January 2015 (has links)
This work is looking in to what possibilites and restrictions comes with using mycelium as a building material for a small house. It includes reasoning around solutions for some of the problems and presenting some ideas of how to use some of the materials properties in your favor. A general background of why we need to start look in to alternative materials for all petroleum materials are presented. / Det här arbetet har varit inriktat på att se vilka möjligheter samt begränsningar det skulle innebära att bygga ett minder hus av mycel. Det inkluderar resonering för lösningar av problemen samt förslag på tillvaratagning av egenskaper i materialet. En generell förklaring till varför vi måste börja titta på alternativ till oljebaserade material finns i arbetet.
|
8 |
The influence of substrate composition and environment on the amino acid content of the mycelia of some fungi imperfecti /Pinto, Patrick Vincent Carmel January 1963 (has links)
No description available.
|
9 |
urartning och uppätning / decay and devouringMontell, Saga January 2023 (has links)
I projektet har jag undersökt postindustriella miljöer på landsbygden, hållbar produktion och offentliga platser. Genom att undersöka och kartlägga bruksorten Stora Vika med dess industriområde försökte jag hitta och föreslå ett nytt sätt att återanvända det förfallna området. Genom att ta tillvara på förfallet på platsen, en naturlig process som möjliggörs av svampars egenskaper, och för att anspela på platsens industriella arv föreslår jag i projektet ett svampcenter kombinerat med ett hus för folket. De offentliga funktionerna som placeras på platsen tillgängliggör och öppnar upp det idag avstängda industriområdet, medan mitt tillägg i en befintlig struktur både erbjuder offentliga rum, producerar mycel som byggnadsmaterial, odlar svamp till restaurangen och möjliggör forskning på svampars möjligheter i en omställning till ett mer hållbart samhället. I projektet har jag undersökt postindustriella områden, modernismens ruiner och hur det är möjligt att återanvända befintliga byggnader. / The project focuses on how to deal with post industrial areas in a rural context, sustainable production and public spaces. By researching and documenting Stora Vika and its post industrial area i tried to find a new way of usage in the decayed place. To take advantage of the decay, which is possible because of fungus, and to connect to the industrial heritage I proposed a centre for fungus, combined with a house for the people. The public functions of the building will make the area itself more available, whilst the existing structure I am working within will serve for public usage as well as produce mycelium as construction material, mushrooms for the restaurant and a laboratory for research on fungus. In this project I have looked into post industrial areas, modern ruins and possibilities of reusing an existing structure.
|
10 |
Mycelium: The Building Blocks of Nature and the Nature of ArchitectureRegalado, Carly 28 June 2022 (has links)
In the face of global climate change, all disciplines and backgrounds have a responsibility to the shared future. The world is facing an impending environmental disaster and humanity’s current efforts are not enough to slow this change, let alone reverse it. Much more drastic efforts must be undertaken by every person and discipline. Architecture has both aesthetic and structural components that have contributed to this situation. Much like the rest of the world, the current practices of architecture are not responsive or responsible enough. The building sector has a unique role in national and global energy consumption. Not only are the structures that are created by these assorted professions responsible for consuming large amounts of annual energy, but the very materials used in their construction add millions of tons of waste to landfills each year. The building sector should not just be responsible for the long-term effects of a structure during the construction and demolition phases. Architecture’s and other design professions’ responsibilities should not end with the completion of a project. Rather, all of the choices, designs, and decisions made before, during, and after the project will echo through the ages as the structure lives on, long after the building has been occupied.
There are many possible solutions to this conundrum, ranging from passive techniques to complex technologies. The incorporation of biological design into modern construction is explored in this thesis. This paper investigates the implications of current building materials in comparison to the potential of an organically informed alternative created from mycelium, the root network of fungi, and post-industrial waste. This thesis considers laboratory experiments and case studies in architecture to understand the shortcomings and potentials of organically derived structures and building materials. Original observations are undertaken to understand the effect of a mycelium composite’s design on various physical properties. This project seeks to evaluate the building blocks of architecture and reevaluate the building field from the ground up. Small individual components are assessed, and their long-term implications are explored.
|
Page generated in 0.0434 seconds