• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 75
  • 53
  • 12
  • 12
  • 12
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 360
  • 360
  • 217
  • 105
  • 79
  • 66
  • 59
  • 58
  • 51
  • 49
  • 46
  • 44
  • 43
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Model based characterization of pharmacokinetic interaction between voriconazole and cytarabine in patients with acute myeloid leukemia

Ματθιός, Ανδρέας 06 November 2014 (has links)
Voriconazole is a broad spectrum antifungal agent. Patients with acute myeloid leukemia that are susceptible to fungal infections receive simultaneously voriconazole and antitumor regimens. Drug-drug interactions between voriconazole and cytarabine involving the CYP3A4 enzyme are thought to affect the pharmacokinetic profile of the drugs and as a result their toxicological or pharmacological outcome. Population pharmacokinetic models were used to characterize these interactions and optimize the dose schemes after coadministration. Simulations and estimations were conducted by using NONMEM. The optimal dose for one hour intravenous infusion of voriconazole was estimated to 5mg/h. The proposed time points based on the pharmacokinetic profile of voriconazole for validated the model by using a small cohort of patients are 2h, 26h, 27h, 50h, 51h, 120h, 335h, 336h after the first administration of the antifungal agent. / Η βορικοναζόλη αποτελεί έναν ευρέως φάσματος αντιμυκητιασικό παράγοντα. Ασθενείς με οξεία μυελογενή λευχαιμία (ΟΜΛ) που θεωρούνται ευπαθείς στην ανάπτυξη μυκητιάσεων λαμβάνουν βορικοναζόλη σε συγχορήγηση με τα αντικαρκινικά φάρμακα. Αλληλεπιδράσεις φαρμάκων που λαμβάνουν χώρα κατά την διάρκεια του μεταβολισμού των χρησιμοποιούμενων φαρμάκων από κοινά ισοένζυμα του κυττοχρώματος P450 πιθανότατα να επιρεάζουν το φαρμακοκινητικό προφίλ τών φαρμάκων. Πληθυσμιακά φαρμακοκινητικά μοντέλα χρησιμοποιήθηκαν για τον χαρακτηρισμό αυτών των αλληλεπιδράσεων και την βελτιστοποίηση του δοσολογικού σχήματος. Προσομοιώσεις και υπολογισμοί πραγματοποιήθηκαν μέσω του προγράμματος NONMEM. Η βέλτιστη δόση μετά μια ώρα έγχυσης της βορικοναζόλης είναι 5mg/L. Τα προτεινόμενα χρονικά σημεία βασισμένα στο φαρμακοκινητικό προφίλ της βορικοναζόλης για την διεξάγωγή μικρού μήκους κλινικής μελέτης που θα επιτρέψει την αξιολόγηση του μοντέλου είναι 2h, 26h, 27h, 50h, 51h, 120h, 335h, 336h μετά την χορήγηση του αντιμυκητιασικού φαρμάκου.
112

Gemtuzumab Ozogamicin (Mylotarg) for the Treatment of Acute Myeloid Leukemia – Ongoing Trials

Gleissner, Beate, Schlenk, Richard, Bornhäuser, Martin, Berdel, Wolfgang E. 24 February 2014 (has links) (PDF)
The value of the combination of gemtuzumab ozogamicin (GO) and chemotherapy for the treatment of acute myeloid leukemia (AML) is currently analyzed within clinical trials. GO (6 mg/m2) and standard-dose cytarabine (100 mg/m2) is evaluated for the treatment of newly diagnosed AML in elderly patients in the SAL phase II trial. Preliminary results of the MRC AML15 trial support the application of GO 3 mg/m2 with standard- and high-dose cytarabine and anthracyclines for the treatment of de novo AML. Within this trial the addition of GO seems especially of value for favorable and intermediate cytogenetic risk groups. The combination of GO (3 mg/m2) and high-dose cytarabine (3 g/m2) is safe and more effective for the treatment of refractory AML than previous combinations from the AMLSG study group. First results prove the possibility of allogeneic stem cell transplantation after GO therapy. Initial data of a phase II trial document the safety and efficacy profile of GO within a reduced-intensity conditioning protocol applying fludarabine and total body irradiation. / Der Stellenwert von Gemtuzumab Ozogamicin (GO) in der Kombination mit Chemotherapie für die Behandlung der akuten myeloischen Leukämie (AML) wird derzeit auch in Europa untersucht. Der Einsatz von GO (6 mg/m2) in Kombination mit Cytarabin (100 mg/m2) bei der Primärbehandlung älterer Patienten mit AML wird in der SAL-Phase-II-Studie geprüft. Das in der MRC-AML15-Studie nachgewiesene verbesserte krankheitsfreie Überleben belegt den Stellenwert von GO (3 mg/m2) in Kombination mit Standard- und hoch dosiertem Cytarabin und einem Anthrazyklin für die Induktion und Konsolidierung bei neu diagnostizierter AML. Insbesondere Patienten mit einem günstigen und intermediären zytogenetischen Risikoprofil scheinen von der Gabe von GO zu profitieren. In der Behandlung von AML-Rezidiven oder refraktärer Erkrankung erwies sich GO (3 mg/m2) als sicher mit hoch dosiertem Cytarabin (3 g/m2) kombinierbar und war in der Wirksamkeit historischen Vergleichskollektiven der AMLSG-Studiengruppe überlegen. Erste Ergebnisse dokumentieren die Möglichkeit einer allogenen Stammzelltransplantation nach GO-Therapie. Erste Daten einer laufenden Studie belegen auch die Einsatzmöglichkeit und das Sicherheitsprofil von GO als Bestandteil einer Konditionierungstherapie von reduzierter Intensität mit Fludarabin und Ganzkörperbestrahlung. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
113

Phosphoproteomic Analysis of Acute Myeloid Leukemia

Durbin, Joshua N. 21 November 2012 (has links)
Acute myeloid leukemia (AML) is a clonal hematopoietic stem cell malignancy, marked by suppressed production of normal terminally differentiated and progenitor hematopoietic cells, and increased cellular proliferation, survival, invasion, and migration of poorly differentiated hematopoietic precursor cells called leukemic blasts. Clinical outcomes vary from good to very poor, and standard therapeutic regiments are only successful in inducing remission for approximately one half of patients. Through the use of phospho tyrosine mass spectrometry, we have identified putative candidate proteins which may be implicated in disease pathogenesis. Our in vitro data suggest a complex within the AML cell lines MOLM-14 and MV4-11 involving tyrosine phosphorylated DAP12, FCER1G, SYK, LYN, and CBL. In addition, we show the ability of high concentrations (µM) of SB203580, a p38α catalytic site inhibitor, to paradoxically sensitize cells to cytarabine while providing a modest proliferative advantage to cells treated with daunorubicin.
114

Auger Electron-emitting Radioimmunotherapeutic (RIT) Agent Specific for Leukemic Stem Cells

Gao, Jin Hua 04 July 2013 (has links)
Objective: CSL360 is a chimeric IgG1 mAb recognizing CD123+/CD131- LSCs responsible for acute myeloid leukemia (AML). The in vitro targeting properties of 111In-labeled CSL360 modified with nuclear localization sequence (NLS) were evaluated in AML cells. Methods: 111In-NLS-CSL360 was constructed and its binding affinity, cellular uptake and nuclear importation were analyzed on CD123+ cells. Cytotoxicity was evaluated by clonogenic assays on AML cells (CD123+/CD131-). Results: 111In-NLS-CSL360 exhibited preserved binding to CD123. High cellular and nuclear uptake was observed at 266 nM after 24 hour of incubation. Nuclear uptake of 111In-NLS-CSL360 (266 nM) was 2.0-fold higher than 111In-CSL360 (266 nM) after 24 hour of incubation. Clonogenic survival (CS) of AML cells was reduced to 27.5 ± 4.1%. The nuclear uptake and cytotoxicity were reduced when pre-exposed to unlabeled CSL360, indicating 111In-NLS-CSL360 was CD123-specific. Conclusion: 111In-NLS-CSL360 could be a promising radioimmunotherapeutic agent specific for LSCs.
115

Phosphoproteomic Analysis of Acute Myeloid Leukemia

Durbin, Joshua N. 21 November 2012 (has links)
Acute myeloid leukemia (AML) is a clonal hematopoietic stem cell malignancy, marked by suppressed production of normal terminally differentiated and progenitor hematopoietic cells, and increased cellular proliferation, survival, invasion, and migration of poorly differentiated hematopoietic precursor cells called leukemic blasts. Clinical outcomes vary from good to very poor, and standard therapeutic regiments are only successful in inducing remission for approximately one half of patients. Through the use of phospho tyrosine mass spectrometry, we have identified putative candidate proteins which may be implicated in disease pathogenesis. Our in vitro data suggest a complex within the AML cell lines MOLM-14 and MV4-11 involving tyrosine phosphorylated DAP12, FCER1G, SYK, LYN, and CBL. In addition, we show the ability of high concentrations (µM) of SB203580, a p38α catalytic site inhibitor, to paradoxically sensitize cells to cytarabine while providing a modest proliferative advantage to cells treated with daunorubicin.
116

Auger Electron-emitting Radioimmunotherapeutic (RIT) Agent Specific for Leukemic Stem Cells

Gao, Jin Hua 04 July 2013 (has links)
Objective: CSL360 is a chimeric IgG1 mAb recognizing CD123+/CD131- LSCs responsible for acute myeloid leukemia (AML). The in vitro targeting properties of 111In-labeled CSL360 modified with nuclear localization sequence (NLS) were evaluated in AML cells. Methods: 111In-NLS-CSL360 was constructed and its binding affinity, cellular uptake and nuclear importation were analyzed on CD123+ cells. Cytotoxicity was evaluated by clonogenic assays on AML cells (CD123+/CD131-). Results: 111In-NLS-CSL360 exhibited preserved binding to CD123. High cellular and nuclear uptake was observed at 266 nM after 24 hour of incubation. Nuclear uptake of 111In-NLS-CSL360 (266 nM) was 2.0-fold higher than 111In-CSL360 (266 nM) after 24 hour of incubation. Clonogenic survival (CS) of AML cells was reduced to 27.5 ± 4.1%. The nuclear uptake and cytotoxicity were reduced when pre-exposed to unlabeled CSL360, indicating 111In-NLS-CSL360 was CD123-specific. Conclusion: 111In-NLS-CSL360 could be a promising radioimmunotherapeutic agent specific for LSCs.
117

MR Diffusion Measurements of Apoptotic Changes in Tumour Cells

Fichtner, Nicole Damara 11 July 2013 (has links)
Monitoring treatment efficacy is a large area of cancer research as it can increase the effectiveness of therapy regimens. Diffusion weighted Magnetic Resonance imaging (DWI), allows assessment of tissue microstructure without exogenous contrast agents. In this thesis, two different DWI techniques were used to acquire data from acute myeloid leukemia cells undergoing apoptosis, and data was fitted to an analytical model of re- stricted diffusion. Results indicated a decrease in average restriction size from 6.4 to 2.7μm, and an increase in the restricted diffusion coefficient from 0.17 to 0.82μm^2/ms in untreated versus treated cells. The free diffusion coefficient was constant indicating changes in restrictions, rather than any intrinsic changes in the intra-cellular or extra- cellular fluid. This combination of techniques has the potential for use in preclinical and clinical settings as it demonstrates that apoptotic changes may be measured consistently.
118

Investigation into the Role of CBL-B in Leukemogenesis and Migration

Badger-Brown, Karla Michelle 15 September 2011 (has links)
CBL proteins are E3 ubiquitin ligases and adaptor proteins. The mammalian homologs – CBL, CBL-B and CBL-3 show broad tissue expression; accordingly, the CBL proteins play roles in multiple cell types. We have investigated the function of the CBL-B protein in hematopoietic cells and fibroblasts. The causative agent of chronic myeloid leukemia (CML) is BCR-ABL. This oncogenic fusion down-modulates CBL-B protein levels, suggesting that CBL-B regulates either the development or progression of CML. To assess the involvement of CBL-B in CML, bone marrow transduction and transplantation (BMT) studies were performed. Recipients of BCR-ABL-infected CBL-B(-/-) cells succumbed to a CML-like myeloproliferative disease with a longer latency than the wild-type recipients. Peripheral blood white blood cell numbers were reduced, as were splenic weights. Yet despite the reduced leukemic burden, granulocyte numbers were amplified throughout the animals. As well, CBLB(-/-) bone marrow (BM) cells possessed defective BM homing capabilities. From these results we concluded that CBL-B negatively regulates granulopoiesis and that prolonged latency in our CBL-B(-/-) BMT animals was a function of perturbed homing.To develop an in vitro model to study CBL-B function we established mouse embryonic fibroblasts (MEFs) deficient in CBL-B expression. Transduction of the wild-type and CBL-B-deficient MEFs with BCR-ABL did not confer transformation; nevertheless, the role of CBL-B in fibroblasts was evaluated. The CBL-B(-/-) MEFs showed enhanced chemotactic migration toward serum in both Transwell migration and time-lapse video microscopy studies. The biochemical response to serum was extensively evaluated leading to the development of a model. We predict that CBL-B deficiency either: (a) augments GRB2-associated binding protein 2 (GAB2) phosphorylation leading to enhanced extracellular signal-regulated kinase (ERK) and protein kinase B (PKB / Akt) signaling, or (b) alleviates negative control of Vav3 resulting in stimulation of Rho effectors. In either case, our results reveal a negative regulatory role for CBL-B in fibroblast migration. The two studies detailed herein expand our knowledge of CBL-B function. They strongly suggest that CBL-B can modulate granulocyte proliferation and point toward a role for CBL-B in the motility of numerous cell types.
119

MR Diffusion Measurements of Apoptotic Changes in Tumour Cells

Fichtner, Nicole Damara 11 July 2013 (has links)
Monitoring treatment efficacy is a large area of cancer research as it can increase the effectiveness of therapy regimens. Diffusion weighted Magnetic Resonance imaging (DWI), allows assessment of tissue microstructure without exogenous contrast agents. In this thesis, two different DWI techniques were used to acquire data from acute myeloid leukemia cells undergoing apoptosis, and data was fitted to an analytical model of re- stricted diffusion. Results indicated a decrease in average restriction size from 6.4 to 2.7μm, and an increase in the restricted diffusion coefficient from 0.17 to 0.82μm^2/ms in untreated versus treated cells. The free diffusion coefficient was constant indicating changes in restrictions, rather than any intrinsic changes in the intra-cellular or extra- cellular fluid. This combination of techniques has the potential for use in preclinical and clinical settings as it demonstrates that apoptotic changes may be measured consistently.
120

Studies of New Signal Transduction Modulators in Acute Myeloid Leukemia

Eriksson, Anna January 2012 (has links)
Acute myeloid leukemia (AML) is a life-threatening malignant disorder with dismal prognosis. AML is characterized by frequent genetic changes involving tyrosine kinases, normally acting as important mediators in many basic cellular processes. Due to the overexpression and frequent mutations of the FMS-like receptor tyrosine kinase 3 (FLT3) in AML, this tyrosine kinase receptor has become one of the most sought after targets in AML drug development. In this thesis, we have used a combination of high-throughput screens, direct target interaction assays and sequential cellular screens, including primary patient samples, as an approach to discover new targeted therapies. Gefitinib, a previously known inhibitor of epidermal growth factor receptor and the two novel tyrosine kinase inhibitors AKN-032 and AKN-028, have been identified as compounds with cytotoxic activity in AML. AKN-028 is a potent inhibitor of FLT3 with an IC50 value of 6 nM in an enzyme assay, but also displaying in vitro activity in a variety of primary AML samples, irrespective of FLT3 mutation status or quantitative FLT3 expression. AKN-028 shows a sequence dependent in vitro synergy when combined with standard cytotoxic agents cytarabine or daunorubicin, with better efficacy when cells are exposed to standard chemotherapy simultaneously or for 24 hours prior to adding AKN-028. Antagonism is observed when cells are pre-treated with AKN-028, possibly explained by the cell cycle arrest induced by the compound. In vivo cytotoxic activity and good oral bioavailability have made AKN-028 a candidate drug for clinical studies and the compound is presently investigated in an international two-part multicenter phase I/II study. Results from microarray studies performed to further elucidate the mechanism of action of AKN-028, revealed significantly altered gene expression induced by AKN-028 in both AML cell lines and in primary AML cells, with an enrichment of the Myc pathway among the downregulated genes. Furthermore, tyrosine kinase activity profiling shows a dose-dependent kinase inhibition by AKN-028 in all AML samples tested. Interestingly, cells with a high overall kinase activity were more sensitive to AKN-028. Provided conformation in a larger set of samples, kinase activity profiling may give useful information in individualizing treatment of patients with AML.

Page generated in 0.0931 seconds