Spelling suggestions: "subject:"20gram probability"" "subject:"0,8gram probability""
1 |
Alternative Approaches to Correction of Malapropisms in AIML Based Conversational AgentsBrock, Walter A. 26 November 2014 (has links)
The use of Conversational Agents (CAs) utilizing Artificial Intelligence Markup Language (AIML) has been studied in a number of disciplines. Previous research has shown a great deal of promise. It has also documented significant limitations in the abilities of these CAs. Many of these limitations are related specifically to the method employed by AIML to resolve ambiguities in the meaning and context of words. While methods exist to detect and correct common errors in spelling and grammar of sentences and queries submitted by a user, one class of input error that is particularly difficult to detect and correct is the malapropism. In this research a malapropism is defined a "verbal blunder in which one word is replaced by another similar in sound but different in meaning" ("malapropism," 2013).
This research explored the use of alternative methods of correcting malapropisms in sentences input to AIML CAs using measures of Semantic Distance and tri-gram probabilities. Results of these alternate methods were compared against AIML CAs using only the Symbolic Reductions built into AIML.
This research found that the use of the two methodologies studied here did indeed lead to a small, but measurable improvement in the performance of the CA in terms of the appropriateness of its responses as classified by human judges. However, it was also noted that in a large number of cases, the CA simply ignored the existence of a malapropism altogether in formulating its responses. In most of these cases, the interpretation and response to the user's input was of such a general nature that one might question the overall efficacy of the AIML engine. The answer to this question is a matter for further study.
|
2 |
The predictability problemOng, James Kwan Yau January 2007 (has links)
Wir versuchen herauszufinden, ob das subjektive Maß der Cloze-Vorhersagbarkeit
mit der Kombination objektiver Maße (semantische und n-gram-Maße) geschätzt
werden kann, die auf den statistischen Eigenschaften von Textkorpora beruhen.
Die semantischen Maße werden entweder durch Abfragen von Internet-Suchmaschinen
oder durch die Anwendung der Latent Semantic Analysis gebildet, während die n-gram-Wortmaße allein auf den Ergebnissen von Internet-Suchmaschinen
basieren. Weiterhin untersuchen wir die Rolle der Cloze-Vorhersagbarkeit
in SWIFT, einem Modell der Blickkontrolle, und wägen ab, ob andere Parameter
den der Vorhersagbarkeit ersetzen können. Unsere Ergebnisse legen nahe, dass
ein computationales Modell, welches Vorhersagbarkeitswerte berechnet, nicht nur
Maße beachten muss, die die Relatiertheit eines Wortes zum Kontext darstellen;
das Vorhandensein eines Maßes bezüglich der Nicht-Relatiertheit ist von ebenso
großer Bedeutung. Obwohl hier jedoch nur Relatiertheits-Maße zur Verfügung
stehen, sollte SWIFT ebensogute Ergebnisse liefern, wenn wir Cloze-Vorhersagbarkeit mit unseren Maßen ersetzen. / We try to determine whether it is possible to approximate the subjective Cloze
predictability measure with two types of objective measures, semantic and word
n-gram measures, based on the statistical properties of text corpora. The semantic measures are constructed either by querying Internet search engines or by applying Latent Semantic Analysis, while the word n-gram measures solely depend on the results of Internet search engines. We also analyse the role of Cloze predictability in the SWIFT eye movement model, and evaluate whether other parameters might be able to take the place of predictability. Our results suggest that a computational model that generates predictability values not only needs to use measures that can determine the relatedness of a word to its context; the presence of measures that assert unrelatedness is just as important. In spite of the fact, however, that we only have similarity measures, we predict that SWIFT should perform just as well when we replace Cloze predictability with our measures.
|
Page generated in 0.08 seconds