Spelling suggestions: "subject:"detype silicon"" "subject:"botype silicon""
1 |
Screen and stencil print technologies for industrial N-type silicon solar cellsEdwards, Matthew Bruce, ARC Centre of Excellence in Advanced Silicon Photovoltaics & Photonics, Faculty of Engineering, UNSW January 2008 (has links)
To ensure that photovoltaics contributes significantly to future world energy production, the cost per watt of producing solar cells needs to be drastically reduced. The use of n-type silicon wafers in conjunction with industrial print technology has the potential to lower the cost per watt of solar cells. The use of n-type silicon is expected to allow the use of cheaper Cz substrates, without a corresponding loss in device efficiency. Printed metallisation is well utilised by the PV industry due to its low cost, yet there are few examples of its application to n-type solar cells. This thesis explores the use of n-type Cz silicon with printed metallisation and diffusion from printed sources in creating industrially applicable solar cell structures. The thesis begins with an overview of existing n-type solar cell structures, previous printed thick film metallisation research and previous research into printed dopant sources. A study of printed thick-film metallisation for n-type solar cells is then presented, which details the fabrication of boron doped p-type emitters followed by a survey of thick film Ag, Al, and Ag/Al inks for making contact to a p-emitter layer. Drawbacks of the various inks include high contact resistance, low metal conductivity or both. A cofire regime for front and rear contacts is established and an optimal emitter selected. A study of printed dopant pastes is presented, with an objective to achieve selective, heavily doped regions under metal contacts without significantly compromising minority carrier lifetime in solar cells. It is found that heavily doped regions are achievable with both boron and phosphorus, but that only phosphorus paste was capable of post-processing lifetime compatible with good efficiencies. The effect of belt furnace processing on n-type silicon wafers is explored, with large losses in implied voltage observed due to contamination of Si wafers from transition metals present in the belt furnace. Due to exposure to chromium in the belt furnace, no significant advantage in using n-type wafers instead of p-type is observed during the belt furnace processing step. Finally, working solar cells with efficiencies up to 16.1% are fabricated utilising knowledge acquired in the earlier chapters. The solar cells are characterised using several new photoluminescence techniques, including photoluminescence with current extraction to measure the quality of metal contacts. The work in this thesis indicates that n-type printed silicon solar cell technology shows potential for good performance at low cost.
|
2 |
Screen and stencil print technologies for industrial N-type silicon solar cellsEdwards, Matthew Bruce, ARC Centre of Excellence in Advanced Silicon Photovoltaics & Photonics, Faculty of Engineering, UNSW January 2008 (has links)
To ensure that photovoltaics contributes significantly to future world energy production, the cost per watt of producing solar cells needs to be drastically reduced. The use of n-type silicon wafers in conjunction with industrial print technology has the potential to lower the cost per watt of solar cells. The use of n-type silicon is expected to allow the use of cheaper Cz substrates, without a corresponding loss in device efficiency. Printed metallisation is well utilised by the PV industry due to its low cost, yet there are few examples of its application to n-type solar cells. This thesis explores the use of n-type Cz silicon with printed metallisation and diffusion from printed sources in creating industrially applicable solar cell structures. The thesis begins with an overview of existing n-type solar cell structures, previous printed thick film metallisation research and previous research into printed dopant sources. A study of printed thick-film metallisation for n-type solar cells is then presented, which details the fabrication of boron doped p-type emitters followed by a survey of thick film Ag, Al, and Ag/Al inks for making contact to a p-emitter layer. Drawbacks of the various inks include high contact resistance, low metal conductivity or both. A cofire regime for front and rear contacts is established and an optimal emitter selected. A study of printed dopant pastes is presented, with an objective to achieve selective, heavily doped regions under metal contacts without significantly compromising minority carrier lifetime in solar cells. It is found that heavily doped regions are achievable with both boron and phosphorus, but that only phosphorus paste was capable of post-processing lifetime compatible with good efficiencies. The effect of belt furnace processing on n-type silicon wafers is explored, with large losses in implied voltage observed due to contamination of Si wafers from transition metals present in the belt furnace. Due to exposure to chromium in the belt furnace, no significant advantage in using n-type wafers instead of p-type is observed during the belt furnace processing step. Finally, working solar cells with efficiencies up to 16.1% are fabricated utilising knowledge acquired in the earlier chapters. The solar cells are characterised using several new photoluminescence techniques, including photoluminescence with current extraction to measure the quality of metal contacts. The work in this thesis indicates that n-type printed silicon solar cell technology shows potential for good performance at low cost.
|
3 |
Implementa??o de emissores p+com diferentes dopantes para c?lulas solares n+np+ finasMachado, Taila Cristiane Policarpi Alves 28 February 2018 (has links)
Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2018-04-24T14:42:28Z
No. of bitstreams: 1
Dissertacao Taila Final.pdf: 2384346 bytes, checksum: 8e3d52f21033cdc04d8f1c3449453ceb (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-05-08T19:50:29Z (GMT) No. of bitstreams: 1
Dissertacao Taila Final.pdf: 2384346 bytes, checksum: 8e3d52f21033cdc04d8f1c3449453ceb (MD5) / Made available in DSpace on 2018-05-08T20:07:12Z (GMT). No. of bitstreams: 1
Dissertacao Taila Final.pdf: 2384346 bytes, checksum: 8e3d52f21033cdc04d8f1c3449453ceb (MD5)
Previous issue date: 2018-02-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / The solar cells manufactured in n-type silicon, doped with phosphorus, do not present
light induced degradation and they have the potential of achieving high efficiency due
to the larger minority charge carrier lifetime. Besides, they are less susceptible to
contamination by metal impurities. The aim of this work was to analyze different
dopants to obtain the p+ region in n+np+ solar cells manufactured in Czochralski silicon
wafers, solar grade, n-type, 120 ?m thick. The acceptor impurities used were B, Al,
Ga, GaB and AlGa, deposited by spin-on and diffused at high temperature. The
temperature, time and gases used in the process of diffusion were ranged. The sheet
resistances (R?) of the diffused regions and the impurity concentration profiles were
measured. We concluded that the B and GaB can be diffused at 970? C for 20 min to
obtain p+ emitters with values of R? suitable to the production of solar cells with screenprinted
metal grid. The Ga and AlGa require high temperatures (greater than 1100? C)
and long times to produce doping profiles compatible with the production of solar cells.
The Al did not produce low sheet resistance regions, even at temperatures of 1100?
C. The use of argon gas instead of the nitrogen did not lead to the decreasing of the
sheet resistance. The GaB is the only one doping material analyzed that can be a
viable replacement for the B in the production of p+ emitter in n-type solar cells.The
GaB was the only one doping material analyzed that allowed the manufacture of solar
cells with the maximum efficiency of 13.5%, with the diffusion performed at 1020? C
for 20 min. The FF was the main parameter that reduced the efficiency of solar cells
doped with GaB when compared to the boron doped cells due to a lower shunt
resistance. The n+np+ solar cell, 120 ?m thick, that achieved the highest efficiency was
doped with boron and reached 14.9%, a value higher than the previously obtained in
studies in the NT-Solar with thin silicon wafers. / As c?lulas solares fabricadas em l?minas de sil?cio tipo n, dopadas com f?sforo,
n?o apresentam degrada??o por ilumina??o e t?m potencial de obten??o de maior
efici?ncia devido ao maior valor do tempo de vida dos portadores de carga
minorit?rios. Adicionalmente, s?o menos suscept?veis ? contamina??o por impurezas
met?licas. O objetivo deste trabalho foi realizar uma an?lise de diferentes dopantes
para obten??o da regi?o p+ em c?lulas solares n+np+fabricadas em l?minas de sil?cio
Czochralski, grau solar, tipo n, com espessura de 120 ?m. Os elementos aceitadores
utilizados foram o B, Al, Ga, GaB e AlGa, depositados por spin-on e difundidos em
alta temperatura. Foram variadas as temperaturas, os tempos e os gases utilizados
no processo de difus?o. Foi medida a resist?ncia de folha (R?) das regi?es difundidas
e o perfil de concentra??o de impurezas em fun??o da profundidade. Foram
desenvolvidas c?lulas solares com B, Ga, GaB e Al. Verificou-se que o B e GaB podem
ser difundidos em temperatura de 970 ?C e por 20 min para obten??o de emissores
com valores de R? compat?veis com a produ??o de c?lulas solares metalizadas por
serigrafia. O Ga e AlGa necessitam de altas temperaturas (maiores que 1100 ?C) e
tempos elevados para produzir perfis de dopantes compat?veis. O Al n?o produziu
regi?es p+ de baixa R?, mesmo com a difus?o a 1100 ?C. O uso de Ar para substituir
o N2 n?o acarretou em diminui??o da resist?ncia de folha. O GaB foi o ?nico dopante
analisado que permitiu a fabrica??o de c?lulas solares com efici?ncia m?xima de 13,5
%, com difus?o a 1020 ?C por 20 min. O fator de forma foi o principal par?metro que
reduziu a efici?ncia dos dispositivos com GaB quando comparado ao valor obtido com
B devido a menor resist?ncia em paralelo. A c?lula solar n+np+ de 120 ?m de maior
efici?ncia produzida neste trabalho foi dopada com boro e atingiu a efici?ncia de 14,9
%, sendo maior que as anteriormente obtidas em trabalhos realizados no NT-Solar
com l?minas finas.
|
Page generated in 0.0525 seconds