• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Screen and stencil print technologies for industrial N-type silicon solar cells

Edwards, Matthew Bruce, ARC Centre of Excellence in Advanced Silicon Photovoltaics & Photonics, Faculty of Engineering, UNSW January 2008 (has links)
To ensure that photovoltaics contributes significantly to future world energy production, the cost per watt of producing solar cells needs to be drastically reduced. The use of n-type silicon wafers in conjunction with industrial print technology has the potential to lower the cost per watt of solar cells. The use of n-type silicon is expected to allow the use of cheaper Cz substrates, without a corresponding loss in device efficiency. Printed metallisation is well utilised by the PV industry due to its low cost, yet there are few examples of its application to n-type solar cells. This thesis explores the use of n-type Cz silicon with printed metallisation and diffusion from printed sources in creating industrially applicable solar cell structures. The thesis begins with an overview of existing n-type solar cell structures, previous printed thick film metallisation research and previous research into printed dopant sources. A study of printed thick-film metallisation for n-type solar cells is then presented, which details the fabrication of boron doped p-type emitters followed by a survey of thick film Ag, Al, and Ag/Al inks for making contact to a p-emitter layer. Drawbacks of the various inks include high contact resistance, low metal conductivity or both. A cofire regime for front and rear contacts is established and an optimal emitter selected. A study of printed dopant pastes is presented, with an objective to achieve selective, heavily doped regions under metal contacts without significantly compromising minority carrier lifetime in solar cells. It is found that heavily doped regions are achievable with both boron and phosphorus, but that only phosphorus paste was capable of post-processing lifetime compatible with good efficiencies. The effect of belt furnace processing on n-type silicon wafers is explored, with large losses in implied voltage observed due to contamination of Si wafers from transition metals present in the belt furnace. Due to exposure to chromium in the belt furnace, no significant advantage in using n-type wafers instead of p-type is observed during the belt furnace processing step. Finally, working solar cells with efficiencies up to 16.1% are fabricated utilising knowledge acquired in the earlier chapters. The solar cells are characterised using several new photoluminescence techniques, including photoluminescence with current extraction to measure the quality of metal contacts. The work in this thesis indicates that n-type printed silicon solar cell technology shows potential for good performance at low cost.
2

Screen and stencil print technologies for industrial N-type silicon solar cells

Edwards, Matthew Bruce, ARC Centre of Excellence in Advanced Silicon Photovoltaics & Photonics, Faculty of Engineering, UNSW January 2008 (has links)
To ensure that photovoltaics contributes significantly to future world energy production, the cost per watt of producing solar cells needs to be drastically reduced. The use of n-type silicon wafers in conjunction with industrial print technology has the potential to lower the cost per watt of solar cells. The use of n-type silicon is expected to allow the use of cheaper Cz substrates, without a corresponding loss in device efficiency. Printed metallisation is well utilised by the PV industry due to its low cost, yet there are few examples of its application to n-type solar cells. This thesis explores the use of n-type Cz silicon with printed metallisation and diffusion from printed sources in creating industrially applicable solar cell structures. The thesis begins with an overview of existing n-type solar cell structures, previous printed thick film metallisation research and previous research into printed dopant sources. A study of printed thick-film metallisation for n-type solar cells is then presented, which details the fabrication of boron doped p-type emitters followed by a survey of thick film Ag, Al, and Ag/Al inks for making contact to a p-emitter layer. Drawbacks of the various inks include high contact resistance, low metal conductivity or both. A cofire regime for front and rear contacts is established and an optimal emitter selected. A study of printed dopant pastes is presented, with an objective to achieve selective, heavily doped regions under metal contacts without significantly compromising minority carrier lifetime in solar cells. It is found that heavily doped regions are achievable with both boron and phosphorus, but that only phosphorus paste was capable of post-processing lifetime compatible with good efficiencies. The effect of belt furnace processing on n-type silicon wafers is explored, with large losses in implied voltage observed due to contamination of Si wafers from transition metals present in the belt furnace. Due to exposure to chromium in the belt furnace, no significant advantage in using n-type wafers instead of p-type is observed during the belt furnace processing step. Finally, working solar cells with efficiencies up to 16.1% are fabricated utilising knowledge acquired in the earlier chapters. The solar cells are characterised using several new photoluminescence techniques, including photoluminescence with current extraction to measure the quality of metal contacts. The work in this thesis indicates that n-type printed silicon solar cell technology shows potential for good performance at low cost.
3

Implementa??o de emissores p+com diferentes dopantes para c?lulas solares n+np+ finas

Machado, Taila Cristiane Policarpi Alves 28 February 2018 (has links)
Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2018-04-24T14:42:28Z No. of bitstreams: 1 Dissertacao Taila Final.pdf: 2384346 bytes, checksum: 8e3d52f21033cdc04d8f1c3449453ceb (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-05-08T19:50:29Z (GMT) No. of bitstreams: 1 Dissertacao Taila Final.pdf: 2384346 bytes, checksum: 8e3d52f21033cdc04d8f1c3449453ceb (MD5) / Made available in DSpace on 2018-05-08T20:07:12Z (GMT). No. of bitstreams: 1 Dissertacao Taila Final.pdf: 2384346 bytes, checksum: 8e3d52f21033cdc04d8f1c3449453ceb (MD5) Previous issue date: 2018-02-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / The solar cells manufactured in n-type silicon, doped with phosphorus, do not present light induced degradation and they have the potential of achieving high efficiency due to the larger minority charge carrier lifetime. Besides, they are less susceptible to contamination by metal impurities. The aim of this work was to analyze different dopants to obtain the p+ region in n+np+ solar cells manufactured in Czochralski silicon wafers, solar grade, n-type, 120 ?m thick. The acceptor impurities used were B, Al, Ga, GaB and AlGa, deposited by spin-on and diffused at high temperature. The temperature, time and gases used in the process of diffusion were ranged. The sheet resistances (R?) of the diffused regions and the impurity concentration profiles were measured. We concluded that the B and GaB can be diffused at 970? C for 20 min to obtain p+ emitters with values of R? suitable to the production of solar cells with screenprinted metal grid. The Ga and AlGa require high temperatures (greater than 1100? C) and long times to produce doping profiles compatible with the production of solar cells. The Al did not produce low sheet resistance regions, even at temperatures of 1100? C. The use of argon gas instead of the nitrogen did not lead to the decreasing of the sheet resistance. The GaB is the only one doping material analyzed that can be a viable replacement for the B in the production of p+ emitter in n-type solar cells.The GaB was the only one doping material analyzed that allowed the manufacture of solar cells with the maximum efficiency of 13.5%, with the diffusion performed at 1020? C for 20 min. The FF was the main parameter that reduced the efficiency of solar cells doped with GaB when compared to the boron doped cells due to a lower shunt resistance. The n+np+ solar cell, 120 ?m thick, that achieved the highest efficiency was doped with boron and reached 14.9%, a value higher than the previously obtained in studies in the NT-Solar with thin silicon wafers. / As c?lulas solares fabricadas em l?minas de sil?cio tipo n, dopadas com f?sforo, n?o apresentam degrada??o por ilumina??o e t?m potencial de obten??o de maior efici?ncia devido ao maior valor do tempo de vida dos portadores de carga minorit?rios. Adicionalmente, s?o menos suscept?veis ? contamina??o por impurezas met?licas. O objetivo deste trabalho foi realizar uma an?lise de diferentes dopantes para obten??o da regi?o p+ em c?lulas solares n+np+fabricadas em l?minas de sil?cio Czochralski, grau solar, tipo n, com espessura de 120 ?m. Os elementos aceitadores utilizados foram o B, Al, Ga, GaB e AlGa, depositados por spin-on e difundidos em alta temperatura. Foram variadas as temperaturas, os tempos e os gases utilizados no processo de difus?o. Foi medida a resist?ncia de folha (R?) das regi?es difundidas e o perfil de concentra??o de impurezas em fun??o da profundidade. Foram desenvolvidas c?lulas solares com B, Ga, GaB e Al. Verificou-se que o B e GaB podem ser difundidos em temperatura de 970 ?C e por 20 min para obten??o de emissores com valores de R? compat?veis com a produ??o de c?lulas solares metalizadas por serigrafia. O Ga e AlGa necessitam de altas temperaturas (maiores que 1100 ?C) e tempos elevados para produzir perfis de dopantes compat?veis. O Al n?o produziu regi?es p+ de baixa R?, mesmo com a difus?o a 1100 ?C. O uso de Ar para substituir o N2 n?o acarretou em diminui??o da resist?ncia de folha. O GaB foi o ?nico dopante analisado que permitiu a fabrica??o de c?lulas solares com efici?ncia m?xima de 13,5 %, com difus?o a 1020 ?C por 20 min. O fator de forma foi o principal par?metro que reduziu a efici?ncia dos dispositivos com GaB quando comparado ao valor obtido com B devido a menor resist?ncia em paralelo. A c?lula solar n+np+ de 120 ?m de maior efici?ncia produzida neste trabalho foi dopada com boro e atingiu a efici?ncia de 14,9 %, sendo maior que as anteriormente obtidas em trabalhos realizados no NT-Solar com l?minas finas.

Page generated in 0.0641 seconds