• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 3
  • Tagged with
  • 22
  • 14
  • 9
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Der Informationsfluss bei der Futtersuche von Ameisen : Spezielle Kommunikationsstrategien von Blattschneiderameisen und nektarsammelnden Ameisen

Geissler, Oliver January 2008 (has links)
Zsfassung in engl. Sprache. - Würzburg, Univ., Diss., 2008.
2

Foraging decisions in the wheatear Oenanthe oenanthe L. during the breeding season

Moreno, Juan. January 1983 (has links)
Thesis--Uppsala. / In Periodical Room.
3

Central place foraging in the wheatear Oenanthe oenanthe and the red-backed shrike Lanius collurio

Carlson, Allan. January 1983 (has links)
Thesis--Uppsala. / In Periodical Room.
4

Ortsgedächtnis für Blütenpositionen bei der Blütenfledermaus Glossophaga soricina

Stich, Kai Petra. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--München.
5

Nahrungsterritorialität bei Braunen Skuas (Catharacta antarctica Ionnbergi) Konsquenzen für Nahrungserwerb und Reproduktion /

Hahn, Steffen. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Jena.
6

Cutter, carriers and bucket brigades ... / Fouragierentscheidungen der grasschneidenden Ameise Atta vollenweideri

Röschard, Jacqueline January 2002 (has links) (PDF)
This study investigates the foraging behaviour of grass-cutting ants, Atta vollenweideri, with specific consideration of the following issues: (a) cutting behaviour and the determination of fragment size, (b) the effect of load size on transport economics, (c) division of labour and task-partitioning. Grass-cutting ants, Atta vollenweideri, harvest grass fragments that serve as substrate for the cultivation of a symbiotic fungus. Foragers were observed to cut grass fragments across the blade, thus resulting in longish, rectangular-shaped fragments in contrast to the semicircular fragments of leaf-cutting ants. Cutting was very time-consuming: In tough grasses like the typical grassland species Paspallum intermedium and Cyperus entrerrianus, cutting times lasted up to more than 20 minutes per fragment and roughly half of all initiated cutting attempts were given up by the ants. Foragers harvesting the softer grass Leersia hexandra were smaller than those foraging on the hard grasses. Fragment size determination and the extent of size-matching between ant body size and fragment size was investigated regarding possible effects of tissue toughness on decision-making and as a function of the distance from the nest. Tissue toughness affected decision-making such that fragment width correlated with ant body mass for the hard grass but not for the soft one, suggesting that when cutting is difficult, larger ants tend to select wider grasses to initiate cutting. The length of the fragments cut out of the two grass species differed statistically, but showed a large overlap in their distribution. Distance from the nest affected load size as well as the extent of size-matching: Fragments collected directly after cutting were significantly larger than those carried on the trail. This indicates that fragments were cut once again on their way to the nest. Size-matching depended on the trail sector considered, and was stronger in ants sampled closer to the nest, suggesting that carriers either cut fragments in sizes corresponding to their body mass prior transport, or transferred them to nestmates of different size after a short carrying distance. During transport, a worker takes a fragment with its mandibles at one end and carries it in a more or less vertical position. Thus, load length might particularly affect maneuverability, because of the marked displacement of the gravitational center. Conversely, based on the energetic of cutting, workers might maximise their individual harvesting rate by cutting long grass fragments, since the longer a grass fragment, the larger is the amount of material harvested per unit cutting effort. I therefore investigated the economics of load transport by focusing on the effects of load size (mass and length) on gross material transport rate to the nest. When controlling for fragment mass, both running speed of foragers and gross material transport rate was observed to be higher for short fragments. In contrast, if fragment mass was doubled and length maintained, running speed differed according to the mass of the loads, with the heavier fragments being transported at the lower pace. For the sizes tested, heavy fragments yielded a higher transport rate in spite of the lower speed of transport, as they did not slow down foragers so much that it counterbalanced the positive effects of fragment mass on material transport rate. The sizes of the fragments cut by grass-cutting ants under natural conditions therefore may represent the outcome of an evolutionary trade-off between maximising harvesting rate at the cutting site and minimising the effects of fragment size on material transport rates. I investigated division of labour and task partitioning during foraging by recording the behaviour of marked ants while cutting, and by monitoring the transport of fragments from the cutting until they reached the nest. A. vollenweideri foragers showed division of labour between cutting and carrying, with larger workers cutting the fragments, and smaller ones transporting them. This division was absent for food sources very close to the nest, when no physical trail was present. Along the trail, the transport of fragment was a partitioned task, i.e., workers formed bucket brigades composed of 2 to 5 carriers. This sequential load transport occurred more often on long than on short trails. The first carriers of a bucket brigade covered only short distances before dropping their fragments, turned back and continued foraging at the same food source. The last carriers covered the longest distance. There was no particular location on the trail for load dropping , i.e., fragments were not cached. I tested the predictions of two hypotheses about the causes of bucket brigades: First, bucket brigades might occur because of load-carriage effects: A load that is too big for an ant to be carried is dropped and carried further by nestmates. Second, fragments carried by bucket brigades might reach the nest quicker than if they are transported by a single carrier. Third, bucket brigades might enhance information flow among foragers: By transferring the load a worker may return earlier back to the foraging site and be able to reinforce the chemical trail, thus recruitment. In addition, the dropped fragment itself may contain information for unladen foragers about currently harvested sources and may enable them to choose between sources of different quality. I investigated load-carriage effects and possible time-saving by presenting ants with fragments of different but defined sizes. Load size did not affect frequency of load dropping nor the distance the first carrier covered before dropping, and transport time by bucket brigades was significantly longer than by single carriers. In order to study the information transfer hypothesis, I presented ants with fragments of different attractivity but constant size. Ants carrying high-quality fragments would be expected to drop them more often than workers transporting low-quality fragments, thus increasing the frequency of bucket brigades. My results show that increasing load quality increased the frequency of bucket brigades as well as it decreased the carrying distance of the first carrier. In other words, more attractive loads were dropped more frequently and after a shorter distance than less attractive ones with the first carriers returning to the foraging site to continue foraging. Summing up, neither load-carriage effects nor time-saving caused the occurrence of bucket brigades. Rather, the benefit might be found at colony level in an enhanced information flow. / Die vorliegende Dissertation untersucht das Sammelverhalten der grasschneidenden Ameise Atta vollenweideri, unter besonderer Berücksichtigung der folgenden Themen: (a) das Schneideverhalten und die Wahl der Fragmentgröße, (b) der Effekt der Fragmentgröße auf den Transport und (c) die Arbeitsteilung während des Sammelns. Die Grasschneiderameise Atta vollenweideri sammelt Grasfragmente, die im Nest zerkleinert werden, um darauf einen symbiotischen Pilz zu züchten. Die Sammlerinnen schnitten ihre Fragmente quer über die Halmbreite, so dass längliche, rechteckige Fragmente entstehen, im Gegensatz zu den halbkreisförmigen Fragmenten der Blattschneiderameisen. Das Schneiden war ein sehr zeitaufwendiger Prozess: Bei harten Gräsern wie die für die Savanne typischen Paspallum intermedium und Cyperus entrerrianus betrug die Schneidezeit pro Fragment bis zu 20 Minuten oder länger. Etwa die Hälfte aller begonnenen Schnitte wurde von den Ameisen aufgegeben. Sammlerinnen, die das weichere Gras Leersia hexandra ernteten, waren kleiner als diejenigen, die die harten Gräser schnitten. Ich untersuchte, inwiefern die Härte des geschnittenen Materials und die Entfernung vom Nest einen Einfluss auf die Wahl der Fragmentgröße und auf die Stärke der Korrelation zwischen Ameisen- und Fragmentgröße hat. Die Länge „harter“ und „weicher“ Fragmente unterschied sich zwar statistisch, zeigte aber eine starke Überlappung. Die Korrelation zwischen Ameisen- und Fragmentgröße existierte bei dem harten Gras, nicht jedoch bei dem weichen Gras. Das heißt, dann wenn das Schneiden schwierig wird, suchen sich größere Tiere breitere Halme zum Schneiden (bzw. kleinere Tiere schmalere Halme). Sowohl Fragmentgröße als auch die Stärke der Korrelation zwischen Fragment- und Ameisengewicht hing von der Entfernung zum Nest ab: Fragmente, die ich direkt nach dem Schneiden sammelte, waren signifikant größer als solche, die ich auf dem Trail sammelte. Dies bedeutet, dass die Fragmente auf ihrem Weg zum Nest ein zweites Mal geschnitten wurden. Die Korrelation zwischen Fragment- und Ameisengewicht war um so stärker, je näher am Nest die Tiere gesammelt wurden, was bedeutet, dass die Trägerinnen entweder die Fragmente vor dem Transport entsprechend ihrer eigenen Körpergröße geschnitten hatten, oder aber dass die Fragmente nach einer kurzen Strecke an Nestgenossinnen anderer Körpergröße übergeben wurden. Um ein Fragment zu transportieren, packen A. vollenweideri-Arbeiterinnen das Fragment mit den Mandibeln an einem Ende und halten es mehr oder weniger senkrecht. Daher ist zu vermuten, dass lange Fragmente schwieriger zu manövrieren sind, da sich der Schwerpunkt mit zunehmender Länge nach oben verschiebt. Lange Fragmente haben jedoch den Vorteil, dass die Menge an geerntetem Material pro Schneideversuch größer ist als bei kurzen; Arbeiterinnen könnten also ihre Sammelrate jedoch dadurch maximieren, dass sie möglichst lange Fragmente schneiden. Im Hinblick auf die Schneidekosten wären dann also lange Fragmente vorteilhaft, im Hinblick auf den Transport hingegen kurze. Ich untersuchte daher den Effekt der Fragmentgröße (Länge und Gewicht) auf den Transport. Waren die Fragmente gleich schwer aber unterschiedlich lang, war die Laufgeschwindigkeit der Arbeiterinnen und damit auch die Eintragsrate bei den kurzen Fragmenten höher. Wenn hingegen das Fragmentgewicht verdoppelt und die Länge konstant gehalten wurde, unterschied sich die Laufgeschwindigkeit entsprechend dem Gewicht der Fragmente: Schwere Fragmente wurden langsamer getragen als leichte. Die Transportrate hingegen war für die schwereren Fragmente höher, da der höhere Eintrag aufgrund des zusätzlichen Gewichts die langsamere Laufgeschwindigkeit aufwog. Die Fragmentgrößen, die Grasschneiderameisen unter natürlichen Bedingungen schneiden, könnten daher im Laufe der Evolution aufgrund des Kompromisses entstanden sein, einerseits die Ernterate am Schneideort zu maximieren und andrerseits die negativen Effekten der Fragmentgröße auf den Transport möglichst gering zu halten. Ich untersuchte die Arbeitsteilung während des Sammelns, indem ich das Verhalten schneidender Tiere beobachtete und indem ich den Fragmenttransport vom Schneideplatz bis zum Nest verfolgte. Schneiden und Tragen von Fragmenten wurde von unterschiedlichen Arbeiterinnengruppen durchgeführt, wobei größere Sammlerinnen die Fragmente schnitten und kleinere sie transportierten. Diese Arbeitsteilung existierte nicht, wenn die Futterquelle sehr nah war, wenn also kein sichtbarer Trail vorhanden war. Der Transport selbst war ebenfalls unterteilt: Die Trägerinnen bildeten Arbeitsketten, die aus zwei bis fünf Trägerinnen bestanden. Diese Arbeitsketten kamen häufiger auf langen als auf kurzen Trails vor. Die ersten Trägerinnen einer solchen Arbeitskette legten nur eine kurze Strecke zurück, bevor sie das Fragment ablegten oder an eine Nestgenossin abgaben. Sie kehrten dann zur gleichen Futterquelle zurück und sammelten weiter. Die letzten Trägerinnen einer Arbeitskette transportierten die Fragmente über die größte Strecke. Es gab keine speziellen Orte auf dem Trail, an denen die Fragmente abgelegt wurden. Ich testete die Voraussagen zweier Hypothesen über den Entstehungsgrund von Arbeitsketten: Nach der ersten Hypothese könnten Arbeitsketten aufgrund von Transporteffekten entstehen, wenn z. B. ein Fragment für eine Ameise zu groß ist, daher abgelegt und von Nestgenossinnen weitergetragen wird. Fragmente könnten auch durch Arbeitsketten schneller transportiert werden, als wenn ein Tier die ganze Strecke bis zum Nest läuft. Nach der zweiten Hypothese könnten Arbeitsketten den Informationsfluss unter den Sammlerinnen erhöhen: Indem sie ein Fragment abgibt, kann eine Sammlerin früher zum Ernteort zurückkehren, sie kann so die Trailmarkierung verstärken und Nestgenossinnen rekrutieren. Zudem könnten unbeladene Arbeiterinnen durch das abgelegte Fragment selbst darüber informiert werden, was gerade geerntet wird. Dies könnte den Sammlerinnen die Möglichkeit geben, zwischen Futterquellen unterschiedlicher Attraktivität zu wählen. Ich untersuchte die Transporteffekte und die mögliche Zeitersparnis, indem ich Ameisen Fragmente unterschiedlicher, jedoch definierter Größe sammeln ließ. Die Fragmentgröße hatte weder einen Einfluss auf die Wahrscheinlichkeit, dass ein Fragment abgegeben wurde, noch auf die Strecke, die es vor der Abgabe getragen wurde. Die Transportzeiten waren höher für Fragmente, die durch Arbeitsketten transportiert wurden, als für solche, die ein Tier die ganze Strecke trug. Um die Informationsfluss-Hypothese zu untersuchen, ließ ich die Ameisen Fragmente sammeln, die gleich groß jedoch unterschiedlicher Attraktivität waren. Nach dieser Hypothese würde man erwarten, dass Ameisen ihre Fragmente eher ablegen, wenn sie attraktiv sind, um dann an den Ernteort zurückzukehren, so dass Arbeitsketten häufiger bei attraktiven Fragmenten auftreten sollten als bei weniger attraktiven. Meine Ergebnisse zeigen, dass ein Anstieg in der Attraktivität der Fragmente die Häufigkeit der Arbeitsketten erhöhte und dass die Strecke, die die erste Trägerin zurücklegte, kürzer war als bei weniger attraktiven Fragmenten. Anders ausgedrückt, attraktivere Fragmente wurden häufiger und nach kürzeren Strecken abgelegt als weniger attraktive. Das bedeutet also, dass die Ursache für das Vorkommen von Arbeitsketten weder in Transporteffekten noch in einer Zeitersparnis beim Transport zu suchen ist. Es scheint vielmehr, dass der Vorteil auf Kolonieebene liegt, indem der Informationsfluss unter den Sammlerinnen erhöht wird.
7

Sensory Ecology of Foraging in Bumblebees / Sensorische Ökologie bei Sammelnden Hummeln

Spaethe, Johannes January 2001 (has links) (PDF)
Pollinating insects exhibit a complex behavior while foraging for nectar and pollen. Many studies have focused on ultimate mechanisms of this behavior, however, the sensory-perceptual processes that constrain such behavior have rarely been considered. In the present study I used bumblebees (Bombus terrestris), an important pollinating insect, to investigate possible sensory constraints on foraging behavior. Additionally, I survey inter-individual variation in the sensory capabilities and behavior of bumblebees caused by the pronounced size polymorphism among members of a single colony. In the first chapter I have focused on the sensory-perceptual processes that constrain the search for flowers. I measured search time for artificial flowers of various sizes and colors, a key variable defining the value of a prey type in optimal foraging theory. When flowers were large, search times correlate well with the color contrast of the targets with their green foliage-type background, as predicted by a model of color opponent coding using inputs from the bee's UV, blue, and green receptors. Targets which made poor color contrast with their backdrop, such as white, UV-reflecting ones, or red flowers, take longest to detect, even though brightness contrast with the background is pronounced. When searching for small targets, bumblebees change their strategy in several ways. They fly significantly slower and closer to the ground, so increasing the minimum detectable area subtended by an object on the ground. In addition they use a different neuronal channel for flower detection: instead of color contrast, they now employ only the green receptor signal for detection. I related these findings to temporal and spatial limitations of different neuronal channels involved in stimulus detection and recognition. Bumblebees do not only possess species-specific sensory capacities but they also exhibit inter-individual differences due to size. Therefore, in the next two chapters I have examined size-related effects on the visual and olfactory system of Bombus terrestris. Chapter two deals with the effect of scaling on eye architecture and spatial resolving power of workers. Foraging efficiency in bees is strongly affected by proficiency of detecting flowers. Both floral display size and bee spatial vision limit flower detection. In chapter one I have shown that search times for flowers strongly increases with decreasing floral display size. The second factor, bee spatial vision, is mainly limited by two properties of compound eyes: (a) the interommatidial angle Çå and (b) the ommatidial acceptance angle Çá. When a pollinator strives to increase the resolving power of its eyes, it is forced to increase both features simultaneously. Bumblebees show a large variation in body size. I found that larger workers with larger eyes possess more ommatidia and larger facet diameters. Large workers with twice the size of small workers (thorax width) have about 50 per cent more ommatidia, and a 1.5 fold enlarged facet diameter. In a behavioral test, large and small workers were trained to detect the presence of a colored stimulus in a Y-maze apparatus. The stimulus was associated with a sucrose reward and was presented in one arm, the other arm contained neither stimulus nor reward. The minimum visual angle a bee is able to detect was estimated by testing the bee at different stimuli sizes subtending angles between 30° and 3° on the bee’s eye. Minimum visual detection angles range from 3.4° to 7.0° among tested workers. Larger bumblebees are able to detect objects subtending smaller visual angles, i.e. they are able to detect smaller objects than their small conspecifics. Thus morphological and behavioral findings indicate an improved visual system in larger bees. Beside vision, olfaction is the most important sensory modality while foraging in bees. Bumblebees utilize species-specific odors for detecting and identifying nectar and pollen rich flowers. In chapter three I have investigated the olfactory system of Bombus terrestris and the effect of scaling on antennal olfactory sensilla and the first olfactory neuropil in the bumblebee brain, the antennal lobes. I found that the pronounced size polymorphism exhibited by bumblebees also effects their olfactory system. Sensilla number (I measured the most common olfactory sensilla type, s. placodea), sensilla density, volume of antennal lobe neuropil and volume of single identified glomeruli correlate significantly with worker’s size. The enlarged volume of the first olfactory neuropil in large individuals is caused by an increase in glomeruli volume and coarse neuropil volume. Additionally, beside an overall increase of brain volume with scaling I found that the olfactory neuropil increases disproportionately compared to a higher order neuropil, the central body. The data predict a higher odor sensitivity in larger bumblebee workers. In the last chapter I have addressed the question if scaling alters foraging behavior and rate in freely foraging bumblebees. I observed two freely foraging B. terrestris colonies and measured i) trip number, ii) trip time, iii) proportion of nectar trips, and iv) nectar foraging rate of different sized foragers. In all observation periods large foragers exhibit a significantly higher foraging rate than small foragers. None of the other three foraging parameters is affected by workers’ size. Thus, large foragers contribute disproportionately more to the current nectar influx of their colony. To summarize, this study shows that understanding the mechanisms of visual information processing and additionally comprising inter-individual differences of sensory capabilities is crucial to interpret foraging behavior of bees. / Blüten bestäubende Insekten zeigen während ihrer Suche nach Nektar und Pollen ein komplexes Sammelverhalten. Bisher wurde eine Vielzahl von Studien durchgeführt um die ultimaten Mechanismen dieses Verhaltens aufzuklären; jedoch die diesem Verhalten zugrundeliegenden sensorischen Leistungen und Limitierungen wurden dabei nur selten berücksichtigt. In der vorliegenden Arbeit habe ich das Sammelverhalten von Hummeln (Bombus terrestris) und potentielle, das Verhalten limitierende sensorischen Zwänge untersucht. Zusätzlich konnte ich Unterschiede im sensorischen System individueller Hummeln aufdecken, die durch den ausgeprägten Größenpolymorphismus dieser Tiere verursacht werden. Im ersten Kapitel habe ich die visuellen Prozesse, die die Suche nach Blüten limitieren betrachtet. Hierfür habe ich die Suchzeiten von Hummeln für künstliche Blüten verschiedener Größe und Farbe in einer Flugarena bestimmt. Bei großen Blüten korrelieren die gemessenen Suchzeiten mit dem Farbkontrast zwischen der Blüte und dem blatt-grünen Hintergrund. Bei Blüten mit geringem Farbkontrast benötigen die Tiere am längsten um sie zu detektieren, obwohl die Blüten einen starken Helligkeitskontrast aufweisen. Diese Ergebnisse stimmen mit den Vorhersagen eines Farbseh-Modells überein, das die Information von den UV-, Blau- und Grünrezeptoren der Hummel verrechnet. Bei der Suche nach kleinen Blüten allerdings ändern die Hummeln ihre Strategie. Sie fliegen jetzt signifikant langsamer und näher am Untergrund um dadurch die Wahrscheinlichkeit zu erhöhen, die Blüten zu detektieren. Zusätzlich benutzen die Hummeln einen anderen neuronalen Kanal für die Blütenerkennung: anstatt des Farbkontrastes nutzen sie jetzt nur noch die Informationen des Grünrezeptors, d.h. den Kontrast zwischen Blüte und Hintergrund, der durch den Grünrezeptor wahrgenommen wird. Ich konnte zeigen, dass der Wechsel zwischen den beiden neuronalen Kanälen durch zeitliche und räumliche Eigenschaften dieser Kanäle verursacht wird. Die sensorischen Leistungen einer Hummel sind nicht nur durch ihre Artzugehörigkeit festgelegt, sondern weisen beträchtliche Unterschiede zwischen großen und kleinen Tieren auf. In den nächsten zwei Kapiteln habe ich deshalb Größeneffekte auf das visuelle und olfaktorische System von Bombus terrestris untersucht. Im zweiten Kapitel beschäftige ich mich mit den Auswirkungen des Größenpolymorphismus auf die Augenmorphologie und das räumliche Auflösungsvermögen von Hummelarbeiterinnen. Das räumliche Auflösungsvermögen des Hummelauges wird hauptsächlich von zwei Faktoren bestimmt: (a) dem Divergenzwinkel zwischen zwei Ommatidienachsen Çå, und (b) dem Öffnungswinkel eines Ommatidiums Çá. Beide Faktoren sind von der Zahl und dem Durchmesser der vorhandenen Ommatidien in einem Komplexauge beeinflußt. Ich konnte nachweisen, daß sich große und kleine Hummeln stark in der Zahl und dem Durchmesser ihrer Ommatidien unterscheiden. Große Hummeln mit der doppelten Thoraxbreite im Vergleich zu ihren kleinen Nestgenossinnen weisen 50 Prozent mehr Ommatidien und einen 1.5-fachen Linsendurchmesser auf. In einem Verhaltensversuch habe ich den kleinsten Sehwinkel, mit dem ein farbiges Objekt von einer Hummel noch erkannt werden kann bestimmt. Auch hier zeigte sich ein starker Größeneffekt. Um so größer die Hummel ist, um so kleiner ist der Sehwinkel unter dem sie ein Objekt gerade noch wahrnehmen kann. Sowohl morphologische Daten als auch Verhaltensdaten zeigen deutlich, dass größere Hummeln ein besseres visuelles System besitzen. Neben dem Sehen ist der Duft die wichtigste sensorische Modalität, die Hummeln während des Sammelns nutzen. Im nächsten Kapitel habe ich mich daher mit möglichen Größeneffekten auf das olfaktorische System beschäftigt. Ich konnte zeigen, daß die Zahl der wichtigsten olfaktorischen Sensillen auf der Antenne, Sensilla placodea, mit zunehmender Körpergröße ansteigt. Das erste olfaktorische Neuropil im Gehirn, die Antennalloben, skalieren ebenfalls mit der Körpergröße. Die Volumenzunahme des Neuropils ist auf eine Volumenzunahme der einzelnen Glomeruli und der Zahl der Interneurone zurückzuführen. Außerdem konnte ich nachweisen, daß das Volumen des olfaktorische Neuropils im Vergleich zu zentralen Hirnregionen überproportional zunimmt. Die Ergebnisse lassen eine höhere Sensitivität des olfaktorischen Systems bei großen Hummeln erwarten. Im letzten Kapitel habe ich mögliche Auswirkung der Körpergröße auf das Sammelverhalten von Hummeln unter natürlichen Bedingungen untersucht. Ein überlegenes visuelles und olfaktorisches System bei größeren Hummeln läßt eine bessere Blütenerkennung, und damit auch eine höhere Sammeleffizienz vermuten. Hierfür habe ich Nektarsammelraten von verschieden großen Tieren im Freiland bestimmt. Größere Tiere zeigen dabei eine höhere Sammelrate (Nektareintrag pro Zeit) im Vergleich zu ihren kleineren Nestgenossinnen. Größere Tiere tragen damit überproportional zum täglichen Nektarinflux einer Kolonie bei. Die Ergebnisse dieser Arbeit zeigen deutlich, dass das Sammelverhalten bei Blüten besuchenden Insekten nur dann richtig verstanden und interpretiert werden kann, wenn man die dem Sammeln zugrundeliegenden sensorischen Prozesse und mögliche individuelle Modifikationen kennt und mit einbezieht.
8

Behavioral adaptations in the foraging behaviour of \(Megaponera\) \(analis\) / Verhaltensanpassungen im Furagierverhalten von \(Megaponera\) \(analis\)

Frank, Erik Thomas January 2019 (has links) (PDF)
An efficient foraging strategy is one of the most important traits for the fitness of animals. The theory of optimal foraging tries to predict foraging behaviour through the overarching question: how animals should forage so as to minimize costs while maximizing profits? Social insects, having occupied nearly every natural niche through widely different strategies, offer themselves as an ideal group to study how well optimal foraging theory can explain their behaviour and success. Specialization often leads to unique adaptations in morphology and behaviour. I therefore decided to investigate the behaviour of Megaponera analis. This ponerine ant species is specialized on hunting only termites of the subfamily Macrotermitinae at their foraging sites. Their foraging behaviour is regulated by a handful of individual scouts (10-20) that search for termite foraging sites before returning to the nest to recruit a large number of nestmates (200-500 ants). These ants then follow the scout in a column formation to the termites and after the hunt return together to the nest, these raids occur two to five times per day. Predators of highly defensive prey likely develop cost reducing adaptations. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites, e.g. a caste specialized in fighting predators. As M. analis incurs high injury/mortality risks when preying on termites, some risk mitigating adaptations have evolved. I show that a unique rescue behaviour in M. analis, consisting of injured nestmates being carried back to the nest, reduces combat mortality. These injured ants “call for help” with pheromones present in their mandibular gland reservoirs. A model accounting for this rescue behaviour identifies the drivers favouring its evolution and estimates that rescuing allows for maintaining a 29% larger colony size. Heavily injured ants that lost too many legs during the fight on the other hand are not helped. Interestingly, this was regulated not by the helper but by the uncooperativeness of the injured ant. I further observed treatment of the injury by nestmates inside the nest through intense allogrooming directly at the wound. Lack of treatment increased mortality from 10% to 80% within 24 hours, with the cause of death most likely being infections. Collective decision-making is one of the main mechanisms in social insects through which foraging is regulated. However, individual decision-making can also play an important role, depending on the type of foraging behaviour. In M. analis only a handful of individuals (the scouts) hold all the valuable information about foraging sites. I therefore looked at predictions made by optimal foraging theory to better understand the interplay between collective and individual decision-making in this obligate group-raiding predator. I found a clear positive relation between raid size and termite abundance at the foraging site. Furthermore, selectivity of the food source increased with distance. The confirmation of optimal foraging theory suggests that individual scouts must be the main driver behind raid size, choice and raiding behaviour. Therefore most central place foraging behaviours in M. analis were not achieved by collective decisions but rather by individual decisions of scout ants. Thus, 1% of the colony (10–20 scouts) decided the fate and foraging efficiency of the remaining 99%. Division of labour is one of the main reasons for the success of social insects. Worker polymorphism, age polyethism and work division in more primitive ants, like the ponerines, remain mostly unexplored though. Since M. analis specializes on a defensive prey, adaptations to reduce their foraging costs can be expected. I found that the work division, task allocation and column-formation during the hunt were much more sophisticated than was previously thought. The column-formation was remarkably stable, with the same ants resuming similar positions in subsequent raids and front ants even returning to their positions if displaced in the same raid. Most of the raid tasks were not executed by predetermined members of the raid but were filled out as need arose during the hunt, with a clear preference for larger ants to conduct most tasks. I show that specialization towards a highly defensive prey can lead to very unique adaptations in the foraging behaviour of a species. I explored experimentally the adaptive value of rescue behaviour focused on injured nestmates in social insects. This was not only limited to selective rescuing of lightly injured individuals by carrying them back (thus reducing predation risk) but moreover includes a differentiated treatment inside the nest. These observations will help to improve our understanding of the evolution of rescue behaviour in animals. I further show that most optimal foraging predictions are fulfilled and regulated by a handful of individuals in M. analis. Lastly, I propose that the continuous allometric size polymorphism in M. analis allows for greater flexibility in task allocation, necessary due to the unpredictability of task requirements in an irregular system such as hunting termites in groups. All of my observations help to further understand how a group-hunting predator should forage so as to minimize costs while maximizing profits. / Ein effizientes Furagierverhalten ist eine der wesentlichsten Voraussetzungen für die Überlebensfähigkeit von Tieren. Die Theorie des „Optimal Foraging“ versucht, das Furagierverhalten durch die übergreifende Frage zu verstehen: Wie sollten Tiere nach Futter suchen/jagen, um die Kosten zu minimieren und gleichzeitig die Gewinne zu maximieren? Soziale Insekten, die fast jede natürliche Nische durch diverse Strategien besetzt haben, bieten sich als ideale Gruppe an, um zu untersuchen, wie gut „Optimal Foraging“ ihr Verhalten und ihren Erfolg erklären kann. Da Spezialisierung oft zu einzigartigen Anpassungen in Morphologie und Verhalten führt, war das Jagdverhalten von Megaponera analis diesbezüglich sehr vielversprechend. Diese Ponerinae Ameisenart ist spezialisiert auf die Jagd von Termiten der Unterfamilie Macrotermitinae an ihren Futterstellen. Ihr Jagdverhalten wird durch eine Handvoll von einzelner Späher (10-20) geregelt, die nach Termiten-Futterstellen suchen, bevor sie zum Nest zurückkehren, um eine große Anzahl von Nestgenossinnen (200-500 Ameisen) zu rekrutieren. Die Ameisen folgen dann dem Späher in einer Kolonne zu den Termiten und zurück, diese Überfälle finden zwei bis fünf Mal am Tag statt. Es ist wahrscheinlich, dass Prädatoren von defensiver Beute kostenreduzierende Anpassungen entwickeln. Das evolutionäre Wettrüsten zwischen Termiten und Ameisen führte zu verschiedenen Abwehrmechanismen bei Termiten, z.B. eine Soldaten-Kaste, die sich auf die Bekämpfung von Raubtieren spezialisiert hat. Da M. analis ein hohes Verletzungsrisiko durch Termitensoldaten hat, haben sich bei ihr einige kostenreduzierende Anpassungen entwickelt. Ich zeige, dass ein einzigartiges Rettungsverhalten bei M. analis, bestehend aus verletzten Nestgenossinnen, die zum Nest zurückgetragen werden, die Mortalität reduziert. Diese verletzten Ameisen „rufen“ um Hilfe mit Pheromonen, die in ihren mandibularen Drüsenreservoirs vorhanden sind. Ein Modell, das dieses Rettungsverhalten berücksichtigt, hilft dabei die wichtigsten Faktoren zu identifizieren, welche die Evolution dieses Rettungsverhaltens begünstigen. Ferner wird schwerverletzten Ameisen, die während des Kampfes zu viele Beine verloren haben, nicht geholfen. Interessanterweise wird dies nicht durch den Helfer reguliert, sondern durch die mangelnde Kooperation der verletzten Ameise. Des Weiteren beobachtete ich die Behandlung der Verletzten durch Nestgenossinnen im Nest durch intensives „Allogrooming“/lecken direkt an der Wunde. Eine Unterbindung der Behandlung erhöhte die Mortalität von 10% auf 80% innerhalb von 24 Stunden, höchstwahrscheinlich aufgrund von Infektionen. Die kollektive Entscheidungsfindung ist einer der Hauptmechanismen bei sozialen Insekten, durch die die Futtersuche reguliert wird. Allerdings spielt die individuelle Entscheidungsfindung, je nach Art des Furagierverhaltens, auch eine wichtige Rolle. In M. analis haben nur eine Handvoll von Individuen (die Späher) alle Informationen über die Futterstellen. Ich betrachtete daher die Vorhersagen, die durch „Optimal Foraging“ gemacht werden, um das Zusammenspiel von kollektiver und individueller Entscheidungsfindung bei diesem obligaten Gruppenjäger besser zu verstehen. Ich fand eine klare positive Beziehung zwischen Raubzugsgröße und Termitenabundanz an der Futterstelle. Außerdem erhöhte sich die Selektivität der Futterstelle mit der Entfernung zum Nest. Die Bestätigung der „Optimalen Foraging“ Theorie deutet darauf hin, dass einzelne Späher der Haupttreiber hinter Raubzugsgröße, Wahl und Raubzugsverhalten sein müssen. Dies bedeutet, dass in M. analis das Furagierverhalten nicht durch kollektive Entscheidungen, sondern durch individuelle Entscheidungen der Späher reguliert wird. So entschied 1% der Kolonie (10-20 Späher) das Schicksal und die Furagier-Effizienz der restlichen 99%. Die Arbeitsteilung ist einer der Hauptgründe des Erfolgs sozialer Insekten. Arbeiterpolymorphismus, Alterspolyethismus und Arbeitsteilung bei primitiveren Ameisen, wie den Ponerinen, blieben bisher jedoch meist unerforscht. Da M. analis sich auf eine defensive Beute spezialisiert hat, sind Anpassungen zur Reduzierung ihrer Furagierkosten zu erwarten. Ich zeige, dass die Arbeitsteilung und Kolonnenformation während der Jagd viel anspruchsvoller ist, als bisher angenommen. Die Kolonnenformation war bemerkenswert stabil: dieselben Ameisen nahmen ähnliche Positionen in späteren Raubzügen ein und die vorderen Ameisen kehrten sogar zu ihrer Position zurück, wenn diese absichtlich verändert wurde. Dies weist auf unbekannte Regulationsmechanismen für die Bildung der Kolonne hin. Darüber hinaus wurden die meisten der Raubzugsaufgaben nicht von vorgegebenen Mitgliedern des Raubzugs ausgeführt, sondern wurden je nach Bedarf während der Jagd verteilt. Meine Versuche zeigen, dass die Spezialisierung auf eine hoch defensive Beute zu sehr einzigartigen Anpassungen im Furagierverhalten einer Art führen kann. Ich erforschte experimentell den adaptiven Wert eines Rettungsverhaltens, das auf verletzte Nestgenossinnen bei sozialen Insekten fokussiert war. Dies beschränkte sich nicht nur auf die selektive Rettung von leicht verletzten Individuen, welche zurückgetragen wurden (wodurch das Prädationsrisiko reduziert wurde), sondern umfasst darüber hinaus eine differenzierte Behandlung im Nest. Ich zeige weiter, dass die meisten „Optimal Foraging“ Vorhersagen von einer Handvoll Individuen in M. analis erfüllt und reguliert werden. Schließlich postuliere ich die Hypothese, dass der kontinuierliche allometrische Größenpolymorphismus in M. analis eine größere Flexibilität bei der Aufgabenverteilung ermöglicht, die aufgrund der Unberechenbarkeit der Aufgabenanforderungen in einem unregelmäßigen System wie dem Jagen von Termiten in Gruppen Erforderlich ist. Alle meine Beobachtungen verbessern unser Verständnis des Verhaltens eines Gruppenjägers, das während der Jagd die Kosten zu minimieren und die Gewinne zu maximieren hat.
9

Der Informationsfluss bei der Futtersuche von Ameisen : Spezielle Kommunikationsstrategien von Blattschneiderameisen und nektarsammelnden Ameisen / The flow of information during foraging in ants: special communication strategies in leaf-cutting ants and nectar feeding ants

Geissler, Oliver January 2008 (has links) (PDF)
Die komplexen Aktivitätsmuster während der Futtersuche bei Ameisen sind kein Resultat einer einfachen Selbstorganisation mit starren Regeln sind, sondern diese Regeln werden vielmehr permanent durch den Informationsaustausch zwischen den Arbeiterinnen modifiziert. Die Furagierökologie hat vor allem einen Einfluss auf die Rekrutierungsstrategie der Tiere. Blattschneiderameisen furagieren an großen und stabilen Nahrungsressourcen auf diese sie nach dem Auffinden sofort stark rekrutieren. Camponotus rufipes besucht hingegen Futterquellen, die in ihrer Ergiebigkeit schlecht vorhersagbar sind. Daher steigern die Tiere ihre Rekrutierungsintensität erst nachdem sie sich durch mehrmaliges Aufsuchen der Futterquelle von deren Beständigkeit überzeugt haben. / The complex foraging activity patterns performed by ant colonies during foraging are not the result of numerous simple stimulus-response behaviours based on fixed decision rules. On the contrary, the decision rules are modified continuously by the information flow between workers. The foraging ecology has a strong impact on the recruitment strategies used by the ants. Leaf-cutting ants forage at long-term ad libitum food sources. Therefore, when food patches once found, the scouts show immediately intense recruiting behaviour. In contrast Camponotus rufipes visit small food patches, which are unpredictable in their profitability. Therefore the animals increase the recruitment activity not until the reliability of the site was tested by being able to perform several successful foraging bouts.
10

The influence of the symbiotic fungus on foraging decisions in leaf-cutting ants - Individual behavior and collective patterns / Einfluss des symbiontischen Pilzes auf das Furagierverhalten von Blattschneiderameisen - Individuelles Verhalten und kollektive Muster

Saverschek, Nicole January 2010 (has links) (PDF)
Foraging behavior is a particularly fascinating topic within the studies of social insects. Decisions made by individuals have effects not only on the individual level, but on the colony level as well. Social information available through foraging in a group modulates individual preferences and shapes the foraging pattern of a colony. Identifying parameters influencing foraging behavior in leaf-cutting ants is especially intriguing because they do not harvest for themselves, but for their symbiotic fungus which in turn influences their plant preferences after the incorporation of the substrate. To learn about the substrates’ unsuitability for the fungus, ants need to be able to identify the incorporated substrate and associate it with detrimental effects on the fungus. Odor is an important plant characteristic known to be used as recognition key outside the nest in the context of foraging. Chapter 1 shows that foragers are able to recall information about the unsuitability of a substrate through odor alone and consequently reject the substrate, which leads to the conclusion that inside the nest, odor might be enough to indentify incorporated substrate. Identification of plant species is a key factor in the foraging success of leaf-cutting ants as they harvest a multitude of different plant species in a diverse environment and host plant availability and suitability changes throughout the year. Fixed plant preferences of individuals through innate tendencies are therefore only one factor influencing foraging decisions. On the individual as well as the colony level, foraging patterns are flexible and a result of an intricate interplay between the different members involved in the harvesting process: foragers, gardeners and the symbiotic fungus. In chapter 2 I identified several conditions necessary for naïve foragers to learn about the unsuitability of substrate inside the nest. In order to exchange of information about the unsuitability of a substrate, the plant in question must be present in the fungus garden. Foragers can learn without own foraging experience and even without experiencing the effects of the substrate on the fungus, solely through the presence of experienced gardeners. The presence of experienced foragers alone on the other hand is not enough to lower the acceptance of substrate by naïve foragers in the presence of naïve gardeners, even if experienced foragers make up the majority of the workforce inside the nest. Experienced foragers are also able to reverse their previous negative experience and start accepting the substrate again. The individual behavior of foragers and gardeners with different experiential backgrounds in the presence of suitable or unsuitable substrate inside the fungus chamber was investigated in chapter 3 to shed some light on possible mechanisms involved in the flow of information about substrate suitability from the fungus to the ants. Gardeners as well as foragers are involved in the leaf processing and treatment of the applied leaf patches on the fungus. If the plant material is unsuitable, significantly more ants treat the plant patches, but foragers are less active overall. Contacts between workers initiated by either gardeners or foragers occur significantly more frequent and last longer if the substrate is unsuitable. Even though experienced gardeners increase naïve foragers’ contact rates and duration with other workers in the presence of suitable plant patches, naïve foragers show no differences in the handling of the plant patches. This suggests that foragers gain information about plant suitability not only indirectly through the gardening workers, but might also be able to directly evaluate the effects of the substrate on the fungus themselves. Outside the nest, foragers influence each other the trail (chapter 4). Foraging in a group and the presence of social information is a decisive factor in the substrate choice of the individual and leads to a distinct and consentaneous colony response when encountering unfamiliar or unsuitable substrates. As leaf-cutting ants harvest different plant species simultaneously on several trails, foragers gain individual experiences concerning potential host plants. Preferences might vary among individuals of the same colony to the degree that foragers on the same trail perceive a certain substrate as either suitable or unsuitable. If the majority of foragers on the trail perceives one of the currently harvested substrates as unsuitable, naïve foragers lower their acceptance within 4 hours. In the absence of a cue in the fungus, naïve foragers harvesting by themselves still eventually (within 6 hours) reject the substrate as they encounter experienced gardeners during visits to the nest within foraging bouts. As foraging trails can be up to 100 m long and foragers spend a considerable amount of time away from the nest, learning indirectly from experienced foragers on the trail accelerates the distribution of information about substrate suitability. The level of rejection of a formerly unsuitable substrate after eight hours of foraging by naïve foragers correlates with the average percentage of unladen experienced foragers active on the trail. This suggests that unladen experienced foragers might actively contact laden naïve workers transmitting information about the unsuitability of the load they carry. Results from experiments were I observed individual laden foragers on their way back to the nest backed up this assumption as individuals were antennated and received bites into the leaf disk they carried. Individuals were contacted significantly more often by nestmates that perceived the carried leaf disk as unsuitable due to previous experience than by nestmates without this experience (chapter 6). Leaf-cutting ants constantly evaluate, learn and re-evaluate the suitability of harvested substrate and adjust their foraging activity accordingly. The importance of the different sources of information within the colony and their effect on the foraging pattern of the colony depend on the presence or absence of each of them as e.g. experienced foragers have a bigger influence on the plant preferences of naïve foragers in the absence of a cue in the fungus garden. / Besonders faszinierend ist das Furagierverhalten sozialer Insekten. Entscheidungen von Individuen haben nicht nur direkte Auswirkungen auf individueller Ebene, sondern auch auf Kolonieebene. Soziale Informationen modulieren individuelle Präferenzen beim Furagieren in der Gruppe und beeinflussen dadurch das Aktivitätsmuster der Kolonie. Die Identifizierung der Faktoren, die das Furagierverhalten beeinflussen, ist bei Blattschneiderameisen komplex, da sie nicht für sich, sondern für ihren symbiotischen Pilz furagieren. Dieser wiederum beeinflusst die Pflanzenwahl der Ameisen nach der Einarbeitung des Pflanzenmaterials in den Pilz. Um zu lernen, dass das eingebaute Substrat für den Pilz ungeeignet ist, müssen die Ameisen in der Lage sein, das bereits eingebaute Substrat zu identifizieren und mit den negativen Effekten auf den Pilz zu assoziieren. Duft ist ein bedeutendes Pflanzencharakteristikum, das außerhalb des Nestes als Identifizierungsmerkmal im Furagierkontext verwendet wird. In Kapitel 1 zeige ich, das Pflanzendüfte alleine ausreichen um Furageuren die Information aus dem Pilzgarten über die des Substrates ins Gedächtnis zu rufen. Furageure lehnen auf Grund des Duftes allein das Substrat bereits ab. Dies lässt den Rückschluss zu, dass Duft möglicherweise als Identifizierungsmerkmal des in den Pilz eingebauten Substrats ausreichend ist. Die Identifizierung von Pflanzenarten ist ein wesentlicher Faktor des Furagiererfolgs bei Blattschneiderameisen, da diese eine Vielzahl unterschiedlicher Pflanzenarten ernten, deren Verfügbarkeit und Eignung sich im Jahresverlauf ändert. Angeborene individuelle Präferenzen sind daher nur einer von mehreren Faktoren, die die Furagierentscheidungen beeinflussen. Sowohl auf individueller als auch auf Kolonieebene sind die beobachteten Muster in der Furagieraktivität flexibel und das Ergebnis eines komplexen Wechselspiels aller Beteiligten im Furagierprozess: die Furageure, die Gärtnerinnen und der symbiotische Pilz. In Kapitel 2 habe ich mehrere Bedingungen identifiziert, die notwendig sind, damit naive Furageure im Nest lernen können, das ein Substrat für den Pilz ungeeignet ist. Um Informationen über die Pflanzenqualität austauschen zu können, ist die Anwesenheit des Substrats im Nest erforderlich. Furageure können allein durch die Anwesenheit erfahrener Gärtnerinnen lernen, ohne eigene Furagiererfahrung und ohne die negativen Effekte des Substrats auf den Pilz erfahren zu haben. Andererseits ist die Anwesenheit erfahrener Furageure allein nicht genug, um die Akzeptanz des Substrats durch naive Furageure zu verringern, wenn die Gärtnerinnen naiv sind, selbst wenn die erfahrenen Furageure die Mehrzeit der Tiere im Nest stellen. Erfahrene Furageure sind auch in der Lage, ihre früheren negativen Erfahrungen zu revidieren und das Substrat wieder zu akzeptieren. Das Individualverhalten von Furageuren und Gärtnerinnen mit unterschiedlichem Erfahrungshintergrund in der Anwesenheit von geeignetem oder ungeeignetem Pflanzenmaterial im Pilz wurde in Kapitel 3 untersucht. Hierbei sollten mögliche Mechanismen des Informationsflusses vom Pilz zu den Ameisen aufgedeckt werden. Sowohl Gärtnerinnen als auch Furageure sind in die Bearbeitung des Blattmaterials involviert. Ist das Blattmaterial ungeeignet, wird es von signifikant mehr Ameisen bearbeitet, aber die allgemeine Aktivität der Furageure ist geringer als bei der Bearbeitung von geeignetem Substrat. Ist das Pflanzenmaterial ungeeignet, finden signifikant mehr und längere Kontakte zwischen den Ameisen statt. Die Anwesenheit erfahrener Gärtnerinnen hat keinen Einfluss auf die Bearbeitungszeit oder Frequenz des geeigneten Blattmaterials durch naive Furageure, sie haben aber einen Einfluss auf die von naiven Furageuren induzierten Kontakte. Diese sind in Anwesenheit von erfahrenen Gärtnerinnen häufiger und länger. Dies lässt vermuten, das Furageure sowohl direkt über den Zustand des Pilzes, als auch indirekt durch Kontakte mit erfahrenen Gärtnerinnen lernen, das ein Substrat für den Pilz ungeeignet ist. Außerhalb des Nestes beeinflussen sich Furageure gegenseitig auf den Erntestraßen (Kapitel 4). Das Furagieren in der Gruppe und die dadurch zur Verfügung stehende soziale Informationen sind ein entscheidender Faktor in der Pflanzenwahl von Individuen und führt zu einer klaren und deutlichen Kolonieantwort bei unbekannten oder ungeeigneten Pflanzenarten. Da Blattschneiderameisen mehrere Pflanzenarten gleichzeitig auf unterschiedlichen Erntestraßen eintragen, unterscheiden sich Furageure in ihren individuellen Erfahrungen. Individuelle Präferenzen innerhalb einer Kolonie können sich so stark voneinander unterscheiden, dass eine Pflanze von unterschiedlichen Furageuren auf derselben Erntestraße sowohl als geeignet als auch als ungeeignet bewertet werden kann. Wenn die Mehrheit der auf der Erntestraße aktiven Furageure negative Erfahrungen mit dem Substrat hat und es als ungeeignet bewertet, dann verringert sich die Akzeptanz dieses Substrates durch naive Furageure ebenfalls signifikant innerhalb von 4 Stunden. Wenn die negativen Effekte im Pilzgarten nicht mehr zu detektieren sind lehnen naive Furageure in Abwesenheit von erfahren Furageuren das Substrat nach ungefähr 6 Stunden ab, da sie bei ihren Nestbesuchen auf erfahrene Gärtnerinnen stoßen. Da Erntestraßen bis zu 100 m lang sein können und Furageure daher lange unterwegs sind, beschleunigt das indirekte Lernen durch erfahrene Furageure auf der Erntestraße die Verbreitung der Information über die Substratqualität innerhalb der Kolonie. Das Maß der Ablehnung des ursprünglich ungeeigneten Substrats durch naive Furageure nach 8 Stunden furagieren korreliert mit dem durchschnittlichen Prozentsatz an unbeladenen, erfahrenen Furageuren auf der Erntestraße. Dies lässt vermuten, dass unbeladene, erfahrene Furageure beladene naive Furageure aktiv kontaktieren und dadurch Informationen über das ungeeignete Substrat übermitteln. Ergebnisse von Individualbeobachtungen unterstützen diese Vermutung. In Kapitel 6 zeige ich, dass beladene Rekruten auf dem Weg zurück zum Nest signifikant häufiger von anderen Furageuren kontaktiert werden, wenn diese negative Erfahrungen mit der vom Rekruten getragenen Pflanzenart haben als wenn die Pflanzenart als geeignet bewertet wird. Blattschneiderameisen bewerten, lernen und bewerten wieder die Qualität geernteten Substrats und passen ihr Furagierverhalten entsprechend an. Die verschiedenen Informationsquellen über die Pflanzenqualität innerhalb der Kolonie haben eine unterschiedliche Gewichtung abhängig von der An- oder Abwesenheit von einer von Ihnen. Zum Beispiel haben erfahrene Furageure in der Abwesenheit von negativen Effekten im Pilzgarten einen deutlich größeren Einfluss auf die Präferenzen naiver Furageure.

Page generated in 0.0903 seconds