• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanomechanical properties of nanocomposite polymer layer / Nanomekaniska egenskaper hos polymera nanokompositfilmer

Tokarski, Tomasz January 2019 (has links)
Interphase phenomenon gains more and more interest throughout the research community. An interphase is formed between a filler particle and a polymeric matrix, and it may constitute almost the entire volume of a nanocomposite. If the interphase have favorable mechanical properties it will thus result in a nanocomposite with such properties. Therefore, understanding the principles of its formation and properties are crucial in order to design advanced nanocomposites. This thesis focuses on PDMS-carboxylic acid modified latex nanoparticles (PDMS-CML) surface composites investigated by means of Atomic Force Microscopy (AFM). A new sample preparation method was designed and utilized together with the Gel Trapping Technique (GTT). Quantitative Imaging Mode and Contact Mode were utilized in the AFM studies. Topography and nanomechanical properties were investigated and compared for pure PDMS and PDMS containing the nanoparticles. Further, Contact Mode was used to investigate nanoscale wear of the samples in order to elucidate the interactions strength between the nanoparticles and the matrix. / Egenskaper hos interfaser är ett område som röner allt större intresse hos forskarna inom materialområdet. En interfas bildas mellan en fillerpartikel och en polymermatris, och den kan utgöra den största volymen i en nanokomposit. Ifall interfasen har fördelaktiga mekaniska egenskaper så resulterar det alltså i att nanokompositen också får det. Det är därför viktigt att först principerna för hur interfasen bildas och får sina egenskaper om man vill framställa avancerade nanokompositer. I det här avhandlingsarbetet lades fokus på PDMS och karboxylsyrefunktionaliserade latex nanopartiklar som bildade en nanokomposit yta, vilken studerades med atomkraftsmikroskopi (AFM). En ny framställningsmetod togs fram och utnyttjades tillsammans med den så kallade ”Gel Trapping” tekniken (GTT). Quantitative Imaging och kontakt mode utnyttjades vid AFM studierna. Topografin och de nanomekaniska egenskaperna studerades för ren PDMS och PDMS blandat med nanopartiklarna. Nötning på nanometernivå studerades också, och dä med AFM i kontakt mode.
2

Characterization of nano-mechanical properties of biological lipid membranes with circular mode atomic force microscopy / Caractérisation des propriétés nanomécaniques des membranes lipidiques biologiques avec microscopie à force atomique mode circulaire

Baiti, Risa Nurin 28 November 2017 (has links)
Les membranes cellulaires sont impliquées dans de nombreux processus cellulaires : la diffusion des médicaments et des ions, la transduction des signaux, la génération d'énergie, le développement cellulaire (fusion et fission). Les bicouches phospholipides sont les principaux composants des membranes cellulaires, elles constituent une barrière dynamique protégeant les réactions biochimiques cellulaires. La détermination des propriétés biochimiques et mécaniques des bicouches lipidiques et leur évolution avec les conditions environnementales est nécessaire pour étudier la nature des processus cellulaires et l'influence des agents externes (résistance mécanique, perméabilité et réponse biologique). Pour mener de telles caractérisations, des modèles simplifiés de membrane biomimétique, tels que des bicouches lipidiques supportées (SLB), ont été développés. Parmi les techniques de caractérisation disponibles, la microscopie à force atomique (AFM) a été largement utilisée pour étudier l'organisation nanométrique des SLB dans des conditions physiologiques. AFM peut produire des images à la haute résolution et peut également être utilisé pour quantifier la résistance mécanique des SLB au moyen d'expériences de perforation. Pendant 30 ans, AFM a traversé de nombreux développements. Très récemment, le Mode circulaire AFM (CM-AFM) a été développé à l'Université de Technologie de Compiègne. CM-AFM est capable de générer un mouvement de glissement de la pointe AFM sur l'échantillon à une vitesse élevée, constante et continue et de mesurer les forces de frottement latéral rapidement et exactement simultanément avec les forces verticales. Pour la première fois, le CM-AFM sert à caractériser les échantillons biologiques dans des conditions physiologiques, ce qui permet de mesurer simultanément les forces de poinçonnage et de frottement en fonction de la vitesse de glissement. Il offre pour la première fois la capacité de décrire le comportement de friction des SLB en complément de la force de perforation. En raison du besoin important de mesure quantitative, l'optimisation du protocole CM-AFM a été effectuée en premier. Le protocole d'étalonnage du scanner a été établi avec succès pour assurer la précision de la vitesse de glissement. En outre, le protocole d'étalonnage des pointes, basé sur la méthode de Wedge et un échantillon rayé, est également conçu pour déterminer la constante d'étalonnage de la force latérale. Nous avons utilisé CM-AFM pour mesurer les propriétés tribologiques des échantillons solides pour améliorer l'équipement sous milieu liquide. Ensuite, les propriétés mécaniques (forces de poinçonnage et de frottement) des SLB ont été mesurées en fonction de la vitesse de glissement. Les SLB purs et mixtes ont été préparés par la méthode de fusion des vésicules. Différents médias ont également été utilisés pour étudier l'effet des cations monovalents sur les propriétés mécaniques des SLB. Dans tous les cas, la force de frottement augmente linéairement avec la vitesse de glissement, ce qui nous permet de déduire le coefficient visqueux de frottement. Comme prévu, la force de poinçonnage et le coefficient visqueux de frottement sont influencés par la composition des mélanges de lipides, par la nature des cations en milieu liquide et par la longueur des chaînes hydrocarbonées mais pas de manière similaire. L'interprétation de l'évolution du coefficient de force de frottement visqueux avec le système étudié est particulièrement délicate car la force de frottement pourrait être influencée par les propriétés d'interface ou de volume. Cette problématique sera le défi pour les prochaines études. Néanmoins, nos résultats illustrent la puissance de la technique CM-AFM et ouvre de nombreuses possibilités pour caractériser d'autres échantillons biologiques (cellules et tissus) afin de mieux comprendre les mécanismes élémentaires de friction. / Cell membranes are involved in many cellular processes: drugs and ions diffusion, signal transduction, energy generation, cell development (fusion and fission). Phospholipid bilayers are the main components of cell membranes, they act as a dynamic barrier protecting cellular biochemical reactions. The determination of biochemical and mechanical properties of lipid bilayers and their evolution with environmental conditions is necessary to study the nature of cellular processes and the influence of external agents (mechanical resistance, permeability, and biological response). To conduct such characterizations, simplified biomimetic membrane models, such as supported lipid bilayers (SLBs), were developed. Among the available characterization techniques, atomic force microscopy (AFM) has been widely used to study the nanoscale organization of SLBs under physiological conditions. AFM can yield high resolution images and it can also be used to quantify the mechanical resistance of SLBs by means of punch through experiments. For 30 years, AFM has been through many developments. Very recently, the Circular Mode AFM (CM-AFM) has been developed at the Université de Technologie de Compiègne. CM-AFM is able to generate a sliding movement of the AFM tip on the sample at high, constant and continuous velocity and to measure the lateral friction forces fast and accurately simultaneously with the vertical forces. For the first time CM-AFM is used to characterize biological samples under physiological conditions, allowing the simultaneous measurement of both the punch-through and the friction forces as a function of the sliding velocity. It offers for the first time the ability to describe the friction behavior of SLBs in complement of the punch-through force. Due to the important need for quantitative measurement, optimization of the CM-AFM protocol has been done first. Protocol of scanner calibration has been successfully established to ensure the accuracy of sliding velocity. Besides, the protocol for tip calibration, based on wedge method and a scratched sample, is also made to determine the lateral force calibration constant. We have employed CM-AFM to measure the tribological properties of solid samples to improve the equipment under liquid medium. Then, the mechanical properties (punchthrough and friction forces) of SLBs were measured as function of the sliding velocity. Pure and mixed SLBs were prepared by the vesicle fusion method. Various media were also used to study the effect of monovalent cations to the mechanical properties of SLBs. In all cases, the friction force increases linearly with the sliding velocity allowing us to deduce the friction viscous coefficient. As expected both the punchthrough force and the friction viscous coefficient are influenced by the composition of lipid mixtures, by the nature of cations in liquid medium, and by the length of hydrocarbon chains but not in a similar fashion. The interpretation of the evolution of the viscous friction force coefficient with the studied system is particularly tricky as the friction force could be influenced by interface or volume properties. This problematic will be the challenge for the next studies. Nevertheless, our results illustrate how powerful the CM-AFM technique is and it opens wide opportunities to characterize other biological samples (cells and tissues) to gain a better understanding of the elementary mechanisms of friction.
3

Analysis of the mechanical behavior of single wall carbon nanotubes by a modified molecular structural mechanics model incorporating an advanced chemical force field

Eberhardt, Oliver, Wallmersperger, Thomas 13 August 2020 (has links)
The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.

Page generated in 0.1139 seconds