• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cristaux photoniques pour le contrôle de l'absorption dans les cellules solaires photovoltaïques silicium ultraminces

Gomard, Guillaume 08 October 2012 (has links)
La technologie photovoltaïque se caractérise par sa capacité à réduire constamment le coût de l’électricité délivrée, notamment grâce aux innovations technologiques. Un pas important a été franchi dans ce sens grâce à la mise en place d’une filière utilisant des couches minces, réduisant significativement la quantité de matériau actif nécessaire. Aujourd’hui, ces efforts se poursuivent et des couches semi-conductrices ultraminces voient le jour. Du fait de leur faible épaisseur, ces couches souffrent d’une faible absorption de la lumière, ce qui limite le rendement de conversion des cellules. Pour répondre à ce problème, les concepts issus de la nano-photonique peuvent être employés afin de contrôler la lumière à l’échelle des longueurs d’onde mises en jeu. Dans ce contexte, nous proposons de structurer la couche active des cellules solaires en cristal photonique (CP) absorbant. Cette nano-structure périodique assure simultanément une collection efficace de la lumière aux faibles longueurs d’onde et un piégeage des photons dans la couche active (ici en silicium amorphe hydrogéné) pour les longueurs d’onde situées près de la bande interdite du matériau absorbant. Dans le cadre de cette étude, des simulations optiques ont été utilisées de manière à optimiser les paramètres du CP, engendrant ainsi une augmentation de l’absorption de plus de 27% dans la couche active sur l’ensemble du spectre utile, et à établir des règles de design en vue de la fabrication des cellules structurées. Les principes physiques régissant leurs propriétés optiques ont été identifiés à partir d’une description analytique du système. Des mesures optiques réalisées sur les échantillons structurés, ont conforté les résultats de simulation et mis en évidence la robustesse de l’absorption de la cellule à l’égard de l’angle d’incidence de la lumière et des imperfections technologiques. Des simulations opto-électriques complémentaires ont démontré qu’une augmentation du rendement de conversion est réalisable, à condition d’introduire une étape de passivation de surface appropriée dans le procédé de fabrication de ces cellules. / The photovoltaic technology is pursuing its constant effort for lowering the price of the electricity delivered, notably thanks to the technological innovations. The use of thin-films based solar cells was an important step towards that direction since it enabled to decrease the amount of active material needed. Recently, ultrathin semi-conductor layers have emerged. Due to their limited thickness, those layers are suffering from a weak absorption of the incoming light which degrades the conversion yield of the resulting cells. To tackle this issue, nano-photonic concepts may offer well-suited solutions to handle the light at the wavelength scale. In this context, we propose to pattern the active layer of solar cells as an absorbing photonic crystal (PC). This periodical nano-structure ensures simultaneously an efficient collection of the light at low wavelengths, together with an appropriate method for trapping photons inside the active layer for the wavelengths close to the material bandgap, which in our case consists in hydrogenated amorphous silicon. In the framework of this study, optical simulations were used to optimize the PC parameters so as to provide a significant (+27% in the sole active layer) absorption increase over the whole spectrum considered and guidelines for the fabrication of the patterned cells. The physics principles ruling their optical properties were identified out of an analytical description of the system. Optical measurements carried on the patterned samples confirmed the simulation results and highlighted the robustness of the overall absorption with regards to the angle of incidence of the light and technological imperfections. In addition, opto-electrical simulations revealed that an increase of the conversion yield can be expected, provided that an appropriated surface passivation step is introduced in the fabrication process.
2

Modélisation multi-échelles des systèmes nanophotoniques à base de matériaux intelligents / Numerical modeling of photonic systems using smart materials

Marchant, Maïté 10 April 2014 (has links)
Beaucoup d’applications en ingénierie demandent l’utilisation de matériaux intelligents qui peuvent se déformer en réponse à un stimulus extérieur. C’est dans ce contexte, que s’est posé ce projet de recherche. Bénéficiant d’un environnement pluridisciplinaire, grâce à l’association de deux axes de l'Institut Pascal : l’axe MMS (Mécanique, Matériaux et Structures) et l’axe PHOTON (Axe Photonique, Ondes, Nanomatériaux), cette thèse s’intègre parfaitement dans l’action transversale "Matériaux et Modélisations multi-échelles" du laboratoire. La première partie de ce travail s'appuie sur un système expérimental mis au point par une équipe américaine [Chang_10] qui permet la mesure sans contact du pH d'une solution en exploitant les caractéristiques photoniques du système. Ce système est composé d'un réseau d'hydrogel fixé sur un substrat rigide. Un modèle numérique est développé dans le but de simuler le fonctionnement de l'ensemble et d'optimiser le réseau d'hydrogel en vue d'applications dans le domaine médical. La seconde partie de ce travail concerne le développement d'une théorie sur le comportement mécanique de polymères sensibles à la lumière. L'objectif est d'établir une relation liant la déformation du matériau à l’intensité lumineuse. Les résultats obtenus sont comparés avec les résultats expérimentaux issus de la littérature. L'influence des interactions entre les molécules d'azobenzènes sur la déformation du matériau est étudiée. / Many engineering applications involve stimuli-responsive materials that can change their shape under the action of an external stimulus. It is in this context that this project takes place. Thanks to a multidisciplinary environment with the association of two lines of research of the Institut Pascal: the Mechanical area (Mechanic, Materials and structure) and the Photonic area (Nanostructures and Nanophotonics), this PhD perfectly fits with the “Materials and multi-scale Modeling” transversal action of the laboratory. The first part of this work relies on an experimental system developed by an American team [Chang_10] which allows to measure the pH of a solution without contact, making use of its photonic characteristics. This system is composed of a hydrogel network fixed on a rigid substract. A numerical model is developed in order to simulate its behavior and optimize the hydrogel network with a view to applications in the medical domain. The second part of this PhD is related to the development of a theory on the mechanical behavior of photo-sensitive polymers. The aim is to establish a link between the material deformation and the light intensity. The obtained results are compared to experimental ones from literature. The interaction influence of the azobenzenes molecules on the material strain is studied.

Page generated in 0.0756 seconds