• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tunable Surface-enhanced Raman Scattering (SERS) from nano-aperture arrays

Zhang, Xiaoqiang 30 April 2012 (has links)
Research work on fabricating organized and reproducible SERS substrates has been done in this thesis. Nano-aperture arrays with circular, bow-tie and cross bow-tie shapes were fabricated by using FIB milling. These arrays were imaged under SEM and their parameters were measured. The optical transmission properties of these arrays were measured by white light transmission. It was found that the shape of the nano-aperture could determine these arrays’ abilities to support SPR. Different shapes would give different SPR modes and generated optical transmission peaks at varied wavelengths. For nano-aperture array with identical shapes, the varied parameters, such as periodicity or tip-to-tip distances, would affect the position of the transmission peaks. Slight increase or decrease of these parameters can be manipulated to adjust the peak positions, catering to the best resonance of the excitation laser used in Raman spectroscopy. The enhancement properties of these arrays as SERS substrates were measured by Raman spectroscopy. Different SERS enhancement properties could be found across different shaped nano-aperture arrays and cross bow-tie nano-aperture arrays give the best SERS enhancement. For nano-aperture array with identical shapes, the varied parameters would affect its ability of SERS enhancement. Near field simulations were carried out in order to explain the relationship of the SERS results and these arrays’ SPR ability. Electrochemical study on these ordered nano-aperture arrays was also carried out in this thesis. / Graduate
2

Monte Carlo Simulation of Large Angle Scattering Effects in Heavy Ion Elastic Recoil Detection Analysis and Ion Transmission Through Nanoapertures.

Franich, Rick, rick.franich@rmit.edu.au January 2007 (has links)
Heavy Ion Elastic Recoil Detection Analysis (HIERDA) is a versatile Ion Beam Analysis technique well suited to multi-elemental depth profiling of thin layered structures and near-surface regions of materials. An existing limitation is the inability to accurately account for the pronounced broadening and tailing effects of multiple scattering typically seen in HIERDA spectra. This thesis investigates the role of multiple large angle scattering in heavy ion applications such as HIERDA, and seeks to quantify its contribution to experimental output. This is achieved primarily by the development of a computer simulation capable of predicting these contributions and using it to classify and quantify the interactions that cause them. Monte Carlo ion transport simulation is used to generate simulated HIERDA spectra and the results are compared to experimental data acquired using the Time of Flight HIERDA facility at the Australian Nuclear Science and Technology Organisat ion. A Monte Carlo simulation code was adapted to the simulation of HIERDA spectra with considerable attention on improving the modelling efficiency to reduce processing time. Efficiency enhancements have achieved simulation time reductions of two to three orders of magnitude. The simulation is shown to satisfactorily reproduce the complex shape of HIERDA spectra. Some limitations are identified in the ability to accurately predict peak widths and the absolute magnitude of low energy tailing in some cases. The code is used to identify the plural scattering contribution to the spectral features under investigation, and the complexity of plurally scattered ion and recoil paths is demonstrated. The program is also shown to be useful in the interpretation of overlapped energy spectra of elements of similar mass whose signals cannot be reliably separated experimentally. The effect of large angle scattering on the transmission of heavy ions through a nano-scale aperture mask, used to collimate an ion beam to a very small beam spot, is modelled using a version of the program adapted to handle the more complex geometry of the aperture mask. The effectiveness of nano-aperture collimation was studied for a variety of ion-energy combinations. Intensity, energy, and angular distributions of transmitted ions were calculated to quantify the degree to which scattering within the mask limits the spatial resolution achievable. The simulation successfully predicted the effect of misaligning the aperture and the beam, and the result has subsequently been observed experimentally. Transmitted ion distributions showed that the higher energy heavier ions studied are more effectively collimated than are lower energy lighter ions. However, there is still a significant probability of transmission of heavy ions with substantial residual energy beyond the perimeter of the aperture. For the intended application, ion beam lithography, these ions are likely to be problematic. The results indicate that medium energy He ions are the more attractive option, as the residual energy of scattered transmitted ions can be more readily managed by customising the etching process. Continuing research by experimentalists working in this area is proceeding in this direction as a result of the conclusions from this work.

Page generated in 0.0579 seconds