• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The bovine serum albumin protein corona on nanoparticles: investigating the effects of changing pH, substrates, and ions

Givens, Brittany Estelle 01 May 2017 (has links)
Nanoparticles are currently used in a wide range of applications including industrially processes, consumer products, and as drug delivery vehicles. The potential toxicity of these nanoparticles in living organisms is concerning due to their ever-expanding applications and accumulation in the environment. The effects of properties of the human body on the potential harmful nature of these nanoparticles must be understood in order to ensure safety in workplaces and at-home products. In this thesis, the interactions between nanoparticles and the most abundant blood protein, serum albumin, were investigated. The effects of changing the aqueous environment was investigated over a range of different pH values and with different ionic salts dissolved in water. The effects of changing the nanoparticle substrate were investigated to determine if different nanoparticles affect proteins differently. Finally, the effects of changing the concentration of nanoparticles and the presence of protein were investigated in a model lung cell line in vitro. The studies over different pH values revealed that serum albumin was able to adsorb to the silica nanoparticle surface, and retained its secondary structure both as a function of pH and adsorption in a 2-hour time frame. However, adsorption was greater on the titanium dioxide nanoparticle surface and the protein lost secondary structure at acidic pH (pH 2.0). Studies with different ionic salts revealed a possible correlation between BSA adsorption and nanoparticle aggregation in that the attractive interactions between nanoparticles were least when the least amount of protein was adsorbed. To the nanoparticle surface. In vitro studies with A549 human adenocarcinoma lung cells were inconclusive in determining the potential toxicity of these nanoparticles, but preliminary results suggested that the addition of protein to the system decreased toxicity compared with nanoparticles alone. This research aims to inform the field of nanotechnology to investigate the safety and efficacy of nanoparticles before they reach the consumer.
2

Glycated Bovine Serum Albumin for Curcumin Nanoencapsulation: Bio-Nano Interactions

Pfeilsticker Neves, Renata 26 August 2021 (has links)
Glycation of whey proteins results in food-grade composites with modified physicochemical properties. Here, the reaction between glucose and bovine serum albumin (BSA) is promoted under wet-heating conditions. The glycated protein is characterized in depth and compared to the native counterpart and the impact of glycation on properties like net surface charge, particle size and surface hydrophobicity are observed. Conjugation with glucose reduced the surface hydrophobicity of BSA but the interactions between albumin and curcumin became stronger, which contradicts the direct relationship between curcumin binding affinity and protein surface hydrophobicity described in the literature. Nonetheless, curcumin was still capable of quenching the intrinsic fluorescence of the protein after conjugation with glucose and leads to the conclusion that curcumin and BSA interact in a different manner upon glycation. This thesis also depicts mucin as a forthcoming model in the study of nanoparticle interactions with intestinal mucus and glycation posed no effect on such interactions.

Page generated in 0.1355 seconds