• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Monte Carlo investigation of radiation damage to chromatin fibers and production of DNA double strand breaks using Geant4-DNA code

Lee, Brian 12 January 2015 (has links)
In the presented research we propose to improve on historically accepted radiobiological models via Monte Carlo simulation of radiation tracks passing through a cell nucleus modeled with up-to-date subnuclear structures. This is performed by generating a radiation track database using the Monte Carlo code, Geant4-DNA, that simulates radiation interactions at the nanometer scale of DNA. These tracks are called upon from the database and intersected with a cell nucleus model that incorporates DNA-containing structures. This allows for a Monte Carlo simulation of how DNA double strand breaks are produced by radiation. The results can be used to correlate to many experimentally observed biological endpoints, e.g. chromosome aberrations as well as cell death.
2

The microdosimetric variance-covariance method used for beam quality characterization in radiation protection and radiation therapy

Lillhök, Jan Erik January 2007 (has links)
<p>Radiation quality is described by the RBE (relative biological effectiveness) that varies with the ionizing ability of the radiation. Microdosimetric quantities describe distributions of energy imparted to small volumes and can be related to RBE. This has made microdosimetry a powerful tool for radiation quality determinations in both radiation protection and radiation therapy. The variance-covariance method determines the dose-average of the distributions and has traditionally been used with two detectors to correct for beam intensity variations. Methods to separate dose components in mixed radiation fields and to correct for beam variations using only one detector have been developed in this thesis. Quality factor relations have been optimized for different neutron energies, and a new algorithm that takes single energy deposition events from densely ionizing radiation into account has been formulated. The variance-covariance technique and the new methodology have been shown to work well in the cosmic radiation field onboard aircraft, in the mixed photon and neutron fields in the nuclear industry and in pulsed fields around accelerators.</p><p>The method has also been used for radiation quality characterization in therapy beams. The biological damage is related to track-structure and ionization clusters and requires descriptions of the energy depositions in nanometre sized volumes. It was shown that both measurements and Monte Carlo simulation (condensed history and track-structure) are needed for a reliable nanodosimetric beam characterization. The combined experimental and simulated results indicate that the dose-mean of the energy imparted to an object in the nanometre region is related to the clinical RBE in neutron, proton and photon beams. The results suggest that the variance-covariance technique and the dose-average of the microdosimetric quantities could be well suited for describing radiation quality also in therapy beams.</p>
3

The microdosimetric variance-covariance method used for beam quality characterization in radiation protection and radiation therapy

Lillhök, Jan Erik January 2007 (has links)
Radiation quality is described by the RBE (relative biological effectiveness) that varies with the ionizing ability of the radiation. Microdosimetric quantities describe distributions of energy imparted to small volumes and can be related to RBE. This has made microdosimetry a powerful tool for radiation quality determinations in both radiation protection and radiation therapy. The variance-covariance method determines the dose-average of the distributions and has traditionally been used with two detectors to correct for beam intensity variations. Methods to separate dose components in mixed radiation fields and to correct for beam variations using only one detector have been developed in this thesis. Quality factor relations have been optimized for different neutron energies, and a new algorithm that takes single energy deposition events from densely ionizing radiation into account has been formulated. The variance-covariance technique and the new methodology have been shown to work well in the cosmic radiation field onboard aircraft, in the mixed photon and neutron fields in the nuclear industry and in pulsed fields around accelerators. The method has also been used for radiation quality characterization in therapy beams. The biological damage is related to track-structure and ionization clusters and requires descriptions of the energy depositions in nanometre sized volumes. It was shown that both measurements and Monte Carlo simulation (condensed history and track-structure) are needed for a reliable nanodosimetric beam characterization. The combined experimental and simulated results indicate that the dose-mean of the energy imparted to an object in the nanometre region is related to the clinical RBE in neutron, proton and photon beams. The results suggest that the variance-covariance technique and the dose-average of the microdosimetric quantities could be well suited for describing radiation quality also in therapy beams.
4

Development of an Advanced Two-Dimensional Microdosimetric Detector based on THick Gas Electron Multipliers / Development of an Advanced 2D THGEM Microdosimetric Detector

Darvish-Molla, Sahar January 2016 (has links)
The THick Gas Electron Multiplier (THGEM) based tissue-equivalent proportional counter (TEPC) has been proven to be useful for microdosimetry due to its flexibility in varying the gaseous sensitive volume and achieving high multiplication gain. Aiming at measuring the spatial distribution of radiation dose for mixed neutron-gamma fields, an advanced two-dimensional (2D) THGEM TEPC was designed and constructed at McMaster University which will enable us to overcome the operational limitation of the classical TEPCs, particularly for high dose rate fields. Compared to the traditional TEPCs, anode wire electrodes were replaced by THGEM layer, which not only enhances the gas multiplication gain but also offers a flexible and convenient fabrication or building 2D detectors. The 2D THGEM TEPC consists of an array of 3×3 sensitive volumes, equivalent to 9 individual TEPCs, each of which has a dimension of 5 mm diameter and length. Taking the overall cost, size and flexibility into account, to process 9 detectors signals simultaneously, a multi-input digital pulse processing system was developed by using modern microcontrollers, each of which is coupled to a 12-bit sampling ADC with a sampling rate of 42 Msps. The signal processing system was tested using a NaI(Tl) detector, which has proven that is it faster than a traditional analogue system and a commercial digital system. Using the McMaster Tandetron 7Li(p,n) accelerator neutron source, both fundamental detector performance, as well as neutron dosimetric response of the 2D THGEM TEPC, has been extensively investigated and compared to the data acquired by a spherical TEPC. It was shown that the microdosimetric response and the measured absorbed dose rate of the 2D THGEM detector developed in this study are comparable to the standard 1/2" TEPC which is commercially available. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.037 seconds