• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrodeposition of gold nanoelectrode ensemble and discussion it's property in electrochemistry

Chang, Wei-Ming 10 September 2002 (has links)
none
2

Fabrication and characterization of gold ultramicro-nanoelectrode ensembles.

Lee, Shern-long 17 August 2005 (has links)
none
3

Develop Microchip with Gold Nanoelectrode Ensemble Electrodes for Electrochemical Detection of Verapamil

Chuang, Jui-Fen 11 August 2011 (has links)
Verapamil is a commonly used medicine for the treatment of supraventricular arrhythmias, angina and hypertension. Recently, some newly developed applications of Verapamil, such as treating hypomania and chemotherapy for cancers, have been reported. Thus, monitoring the concentration of Verapamil accurately is very important. The major clinical analytical methods of Verapamil concentration determination are high performance liquid chromatography (HPLC) with UV or with fluorescence detector. However, these analytical methods have some disadvantages, like expensive instruments, complex operation, and time-consuming etc. The chemical structure and properties of Verapamil are very stable. The preliminary result of electrochemical analysis doesn¡¦t show any electrochemical activity. In this study, we developed an innovative ozone pre-treatment method to oxidize Verapamil to the smaller molecules and change its structure. Verapamil have excellent electrochemical activity after ozone pre-treatment. The spectroscopy and mass spectrometry show the changes of Verapamil structure. The products of Verapamil treated with ozone are also predicted by mass spectrometry. The gold nanoelectrode ensemble electrodes (GNEE) are used as working electrode for its good catalytic activity of electrochemical reaction, high sensitivity and high selectivity. The overall experimental framework of this study is microchip with GNEE working electrode accompanied by cyclic voltammetry, an electrochemical analytical instrument. Compared with traditional analytical methods, the system has some advantages such as small size, micro sample volume, easy operation, rapid detection and low cost. The limit concentration of Verapamil solution for stable detection in the system is 10 ng/mL. A linear dynamic range with a high correlation factor from 10 ng/mL to 100 £gg/mL was obtained. For the analysis of serum sample, Verapamil present excellent electrochemical activity at 1 ng/mL. A linear dynamic range with a high correlation factor from 1 ng/mL to 100 £gg/mLwas obtained. According to the results, our system for clinical Verapmil concentration analysis has the feasibility of the practical application.
4

The applications of gold-nanoparticles in immunoassay, DNA assay and microchip analysis

Liao, Kuo-Tang 08 October 2005 (has links)
Determination of bio-material by using enzyme, fluorophore or metal-nanoparticles as markers is very important. Generally, gold-nanoparticles have been used frequently as marker for increasing the sensitivity in bio-chemical assay. In this research, gold-nanoparticles were used as marker for immunoassay, DNA sequence assay, and protein analysis. However, the size of gold-nanoparticles affects directly the results of electrochemical detection. For improving the sensitivity of electrochemical method, enlargement of gold-nanoparticles was used in this study. By electroless deposition, Au will be deposited on the surface of gold-nanoparticles. The electrochemical response will thus be increased substantially. In immunoassay and DNA sequence assay, traditional 96-wells microtiter plate was used for immobilizing antibody or oligonucleotide, and the gold-nanoparticles were marked subsequently base on the immunoreaction or protein reaction of streptavidin and biotin. After gold-nanoparticles were enlarged, they were dissolved and transferred to an electrochemical cell for square wave stripping voltammetry¡]SWSV¡^analysis. Under optimal experimental condition, dynamic range of 1 ~ 500 pg/mL and 0.52 ~ 1300 aM were found respectively for RIgG and Target DNA analysis, and a good linear relationship¡]R2 = 0.9975 and 0.9982¡^. The relative standard deviation¡]R.S.D.¡^ of blank were 2.8 % and 2.4 %¡]n = 11¡^for immunoassay and DNA assay, respectively. And the variance was 2.4 %¡]n = 9¡^and 2.4 %¡]n = 12¡^for immunoassay and DNA assay, respectively. The detection limit¡]based on S/N = 3¡^of RIgG and DNA were 0.25 pg/mL and 0.52 aM, respectively. They are very competitive compared with similar results reported in the literature. Additional, a gold nanoelectrode ensemble¡]GNEE¡^coupled microchip system was developed for bio-electrochemical analysis. Due to the difference in mobility of urea and urease were mixed and allowed the enzymatic reaction to proceed in microchannel. The enzymatic product NH4+ was determined by the coupled GNEE at the outlet of the channel. Another experiment of streptavidin conjugated gold-nanoparticles¡]streptavidin-Au¡^, reductant and gold-ion¡]Au3+¡^solution was be applied here, too. The product, NH4+ or Au3+ was passed through downstream of microchannel and detected by GNEE of electrochemical system. Satisfactory linear relationship¡]R2 = 0.9778 and 0.9657¡^were found from 0.1 mM to 50 mM for NH4+ and urea in the range of 0.02 mM to 5.0 mM, respectively. The other satisfactory linear relationship¡]R2 = 0.9842 and 0.9507¡^ were found between 3.75 mg/mL and 3.75 g/mL for Au3+ and streptavidin-Au in the range of 0.2 ng/mL to 100 ng/mL, respectively. Variances of 2.5 %¡]n = 6¡^was found for analysis of with the microchip system.

Page generated in 0.0994 seconds