• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 13
  • 10
  • 9
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 27
  • 23
  • 21
  • 19
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Urban, Ben E. 05 1900 (has links)
Light matter interactions have led to a great part of our current understanding of the universe. When light interacts with matter it affects the properties of both the light and the matter. Visible light, being in the region that the human eye can "see," was one of the first natural phenomenon we used to learn about our universe. The application of fundamental physics research has spilled over into other fields that were traditionally separated from physics, being considered two different sciences. Current physics research has applications in all scientific fields. By taking a more physical approach to problems in fields such as chemistry and biology, we have furthered our knowledge of both. Nanocrystals have many interesting optical properties. Furthermore, the size and properties of nanocrystals has given them applications in materials ranging from solar cells to sunscreens. By understanding and controlling their interactions with systems we can utilize them to increase our knowledge in other fields of science, such as biology. Nanocrystals exhibit optical properties superior to currently used fluorescent dyes. By replacing molecular dyes with nanoparticles we can reduce toxicity, increase resolution and have better cellular targeting abilities. They have also shown to have toxicity to cancer and antibacterial properties. With the understanding of how to target specific cells in vitro as well as in vivo, nanoparticles have the potential to be used as highly cell specific nanodrugs that can aid in the fight against cancer and the more recent fight against antibiotic resistant bacteria. This dissertation includes our work on bioimaging as well as our novel drug delivery system. An explanation of toxicity associated with ZnO nanoparticles and how we can use it and the nonlinear optical properties of ZnO for nanodrugs and nanoprobes is presented.
2

NANOMATERIALS TO BIOSENSORS: A BENCH-TOP RAPID PROTOTYPING APPROACH

Liao, Wei-Ssu 2009 May 1900 (has links)
Nanofabrication has received substantial interest from scientists and engineers because of its potential applications in many fields. This was because nanoscale structures have unique properties that cannot be observed or utilized at other size scales. Our living environment and many of our daily necessities had been strongly influenced by these techniques. Computers, electronics, housewares, vehicles, and medical care are now all affected by this explosive nanotechnology. However, traditional methods in controlling nanoscale features and their properties were often time-consuming and expensive. The objective of my research was to design, fabricate, and test nanostructure platforms using a unique toolbox of bottom-up lithographic techniques recently developed in our laboratory. These novel methods can be utilized for the rapid prototyping of nanoscale patterns in a much easier and more economical way. Specifically, we also focused on applying these nanoscale patterns as sensor platforms. These platforms were easily produced with our unique methods, and provide ultra sensitive capability to detect diverse chemical or biological species. The demonstration of capabilities and applications of our unique technologies includes the following projects. Chapters II and III describe a simple, inexpensive, and rapid method for making metal nanoparticles ranging between 10 nm and 100 nm in size through metal photoreduction with templates. The process can be completed in approximately 11 minutes without the use of a clean room environment or vacuum techniques. A simple label-free biosensor fabrication method based on transmission localized surface plasmon resonance (T-LSPR) of this platform is also demonstrated. Chapters IV and V present a nanoscale patterning technique for creating diverse features in polymers and metals. The process works by combining evaporative ring staining with a colloidal templating process. Well-ordered hexagonally arrayed nanorings, double rings, triple rings, targets, and holes were all easily prepared. A line width as thin as ~15 nm can repeatably be performed with this technology. Finally, Chapter VI demonstrates an ultra-sensitive plasmonic optical device based on hexagonal periodic nanohole metal films produced through our evaporative templating technique. The optical properties of these sub-wavelength periodic hole array metal films are discussed.
3

NANOMATERIALS TO BIOSENSORS: A BENCH-TOP RAPID PROTOTYPING APPROACH

Liao, Wei-Ssu 2009 May 1900 (has links)
Nanofabrication has received substantial interest from scientists and engineers because of its potential applications in many fields. This was because nanoscale structures have unique properties that cannot be observed or utilized at other size scales. Our living environment and many of our daily necessities had been strongly influenced by these techniques. Computers, electronics, housewares, vehicles, and medical care are now all affected by this explosive nanotechnology. However, traditional methods in controlling nanoscale features and their properties were often time-consuming and expensive. The objective of my research was to design, fabricate, and test nanostructure platforms using a unique toolbox of bottom-up lithographic techniques recently developed in our laboratory. These novel methods can be utilized for the rapid prototyping of nanoscale patterns in a much easier and more economical way. Specifically, we also focused on applying these nanoscale patterns as sensor platforms. These platforms were easily produced with our unique methods, and provide ultra sensitive capability to detect diverse chemical or biological species. The demonstration of capabilities and applications of our unique technologies includes the following projects. Chapters II and III describe a simple, inexpensive, and rapid method for making metal nanoparticles ranging between 10 nm and 100 nm in size through metal photoreduction with templates. The process can be completed in approximately 11 minutes without the use of a clean room environment or vacuum techniques. A simple label-free biosensor fabrication method based on transmission localized surface plasmon resonance (T-LSPR) of this platform is also demonstrated. Chapters IV and V present a nanoscale patterning technique for creating diverse features in polymers and metals. The process works by combining evaporative ring staining with a colloidal templating process. Well-ordered hexagonally arrayed nanorings, double rings, triple rings, targets, and holes were all easily prepared. A line width as thin as ~15 nm can repeatably be performed with this technology. Finally, Chapter VI demonstrates an ultra-sensitive plasmonic optical device based on hexagonal periodic nanohole metal films produced through our evaporative templating technique. The optical properties of these sub-wavelength periodic hole array metal films are discussed.
4

New nanomaterials: amyloid fibrils from waste proteins

Domigan, Laura Joy January 2012 (has links)
The current landscape of nanotechnology has focussed attention on materials that self-assemble. The search for such materials has unsurprisingly led to the biological world, where functional nanoscale biomolecular assemblies are in abundance. Amyloid fibrils are one such self-assembling biological structure, formed when native proteins misfold into insoluble fibrous quaternary structures. This research has explored the use of amyloid fibrils formed from waste proteins, namely crude crystallin proteins from fish eye lenses, as biological nanowires. The use of amyloid fibrils as nanowires was investigated by examining the ability to control their dimensions and arrangement, along with analysis of their properties, such as stability and conductivity. TEM and AFM studies on the model amyloid forming protein, bovine insulin, showed that a number of fibril length distributions can be achieved, by systematically altering fibril growth and storage conditions. Although the same set of conditions cannot be directly applied to crystallin fibrils, these fibrils can also be produced on a range of length scales. Amyloid fibrils can be manipulated and aligned in a controlled manner by dielectrophoresis; this tool could later be used to incorporate amyloid fibrils into a biosensing or bioelectronics device. Dielectrophoresis was also used to immobilise crystallin fibrils between electrode pairs, in order to investigate the conductivity of small numbers of fibrils. These experiments complemented work carried out on the conductivity of amyloid fibril networks, using fabricated interdigitated electrodes. In the unmodified state, amyloid fibrils formed from bovine insulin, fungal hydrophobins, and crude crystallins were all shown to have low conductivity, with current values in the range of 10⁻⁸–10⁻¹⁰ A recorded at bias voltages of 0–2 V. Amyloid fibrils were used as a template for the synthesis of conductive nanowires, by modification with the conducting polymers polyaniline and polypyrrole, increasing conductivity by one and four orders of magnitude respectively. The functionalisation of fibrils with glucose oxidase enabled the creation of a very simple glucose sensing device. This device, consisting of a gold electrode modified with the glucose oxidase functionalised fibrils, showed an electrochemical response in the presence of glucose and the mediator FcOH. Future work is necessary to optimise the use of amyloid fibrils in this way; however, this study confirms a role for amyloid fibrils from a low cost source in bionanotechnology.
5

Towards new generation of sustainable catalysts:Study of shape and size controlled TiO2 nanoparticlesin photocatalytic degradation of industrial dye

ABU BAKAR, FARIDAH January 2014 (has links)
Due to industrialization and population growth, environmental contamination caused by organic pollutants is becoming an increasing problem worldwide. Environmental pollution on a global scale, particularly water pollution, has drawn scientists’ attention to the vital need for environmentally clean and friendly chemical processes. The demand for higher quality water has increased due to population growth, more stringent health regulations and economic development. Untreated wastewater contains a variety of organic compounds with variable toxicities as well as carcinogenic and mutagenic properties. Most contaminants in wastewater contain aromatic rings, which are generally resistant to chemicals, photochemicals and biological degradation.These compounds are very persistent in the environment and have a high potential to negatively affect human health and the ecosystem. Therefore, the removal or degradation of hazardous material and contaminants from wastewater is a significant global challenge. This thesis reported on the synthesis of titanium dioxide by using a peroxo method. This synthesis was done in the presence of a number of fluoride-containing surfacemodifying agents to determine the effects of these agents on particle growth, shape and crystallinity. Further, studies were carried out to investigate the modification of F-modified TiO2 with the deposition of Au colloids and an Au9 cluster. A different deposition method is employed in the synthesis of the TiO2-Au materials to gain a catalyst with the highest photocatalytic activity. The performance of the catalyst was further investigated through pre-treatment and post-treatment of the materials. Finally, several of the synthesised materials were trialled as photocatalysts using industrial dye Reactive Blue 19 (RB19) as an organic pollutant.
6

Electrochemically Active Biofilms Assisted Nanomaterial Synthesis for Environmental Applications

Ahmed, Elaf 12 1900 (has links)
Nanomaterials have a great potential for environmental applications due to their high surface areas and high reactivity. This dissertation investigated the use of electrochemically active biofilms (EABs) as a synthesis approach for the fabrication and environmental applications of different nanomaterials. Bacteria in EABs generate electrons upon consuming electron donor and have the ability to transport these electrons to solid or insoluble substrates through extracellular electron transport (EET) mechanism. The extracellularly transported electrons, once utilized, can lead to nanoparticle synthesis. In this dissertation, noble metal (i.e., Au, Pd, and Pt) ultra-small nanoparticles (USNPs) were first synthesized with the assistance by the EABs. The assynthesized USNPs had a size range between 2 and 7 nm and exhibited excellent catalytic performance in dye decomposition. Also in this research, a two-dimensional (2D) cobalt nanosheet was successfully synthesized in the presence of EABs. A simple biogenic route led to the transformation of cobalt acetate to produce a green, toxic free homogeneous 2D cobalt nanosheet structure. Further, TiO2 nanotubes were successfully combined with the noble metal USNPs to enhance their photocatalytic activity. In this work, for the first time, the noble metal USNPs were directly reduced and decorated on the internal surfaces of the TiO2 nanotubes structure assisted by the EABs. The USNPs modified TiO2 nanotubes generated significantly improved photoelectrocatatlyic performances. This dissertation shines lights on the use of EABs in ultra-small nanoparticle synthesis.
7

Thermoelectric Properties of Zr0.5Hf0.5Ni1-xPdxSn0.99Sb0.01 and Effect of Nanoinclusions on Transport Properties of Half Heuslers

Yaqub, Rumana 04 August 2011 (has links)
Thermoelectric materials convert temperature gradients into electricity and vice-versa. These materials utilize the Seebeck effect for power generation and function without moving parts and are highly reliable. The efficiency of thermoelectric devices is related to the dimensionless figure of merit for the constituent materials, defined as where S is the Seebeck coefficient, is the electrical conductivity, is the thermal conductivity and T is the temperature. Maximizing ZT is very challenging because of interdependence of parameters, for example, increasing the electrical conductivity by increasing the carrier concentration invariably lowers S and vice versa. Presently numerous thermoelectric materials are being investigated by different research groups. Despite having high thermal conductivity, half-Heusler materials are promising candidates for thermoelectric applications due to their relatively high power factor () and the ability to tune the thermal and electrical properties through substitutional doping. 2S In this research work, I have investigated the synthesis and transport properties of half Heusler series Zr 0.5Hf0.5Ni1-xPdxSn0.99Sb0.01 (0≤x≤1). Also the role of NiO and HfO2 nanoinclusions in half –Heusler matrix were studied. The half Heusler samples were prepared by solid state reaction. Resistivity, Seebeck coefficient and thermal conductivity were measured for all samples over a temperature range from room temperature to 750K. Hall effect measurements at room temperature were also performed. Addition of NiO inclusions did result in an improvement in ZT whereas addition of 3% vol HfO2 in Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 showed 19% improvement in ZT.
8

Fluorescence Properties of Quantum Dots and Their Utilization in Bioimaging

Xu, Hao January 2016 (has links)
Quantum dots (QDs), especially colloidal semiconductor QDs, possess properties including high quantum yields, narrow fluorescence spectra, broad absorption and excellent photostability, making them extremely powerful in bioimaging. In this thesis, we studied the fluorescence properties of QDs and attempted multiple ways to boost applications of QDs in bioimaging field. By time-correlated single photon counting (TCSPC) measurement, we quantitatively interpreted the fluorescence mechanism of colloidal semiconductor QDs. To enhance QD fluorescence, we used a porous alumina membrane as a photonic crystal structure to modulate QD fluorescence. We studied the acid dissociation of 3-mercaptopropionic acid (MPA) coated QDs mainly through electrophoretic mobility of 3-MPA coated CdSe QDs and successfully demonstrated the impact of pH change and Ca2+ ions. Blinking phenomena of both CdSe-CdS/ZnS core-shell QDs and 3C-SiC nanocrystals (NCs) were studied. A general model on blinking characteristics relates the on-state distribution to CdSe QD surface conditions. The energy relaxation pathway of fluorescence of 3C-SiC NCs was found independent of surface states. To examine QD effect on ciliated cells, we conducted a 70-day long experiment on the bioelectric and morphological response of human airway epithelial Calu-3 cells with periodic deposition of 3-MPA coated QDs and found the cytotoxicity of QDs was found very low. In a brief summary, our study of QD could benefit in bioimaging and biosensing. Especially, super-resolution fluorescent bioimaging, such as, stochastic optical reconstruction microscopy (STORM) and photo-activated localization microscopy (PALM), may benefit from the modulation of the QD blinking in this study. And fluorescence lifetime imaging (FLIM) microscopy could take advantage of lifetime modulation based on our QD lifetime study. / <p>QC 20160905</p>
9

Low-Temperature Fabrication of Ion-Induced Ge Nanostructures: Effect of Simultaneous Al Supply

SOGA, Tetsuo, TOKUNAGA, Tomoharu, HAYASHI, Yasuhiko, TANEMURA, Masaki, HAYASHI, Toshiaki, MIYAWAKI, Ako 01 December 2009 (has links)
No description available.
10

Development of Advanced Nanomanufacturing: 3D Integration and High Speed Directed Self-assembly

Li, Huifeng 2010 August 1900 (has links)
Development of nanoscience and nanotechnology requires rapid and robust nanomanufacturing processes to produce nanoscale materials, structures and devices. The dissertation aims to contribute to two major challenging and attractive topics in nanomanufacturing. Firstly, this research develops fabrication techniques for three dimensional (3D) structures and integrates them into functional devices and systems. Secondly, a novel process is proposed and studied for rapid and efficient manipulation of nanomaterials using a directed self-assembly process. The study begins with the development of nanoimprint lithography for nanopatterning and fabrication of 3D multilayer polymeric structures in the micro- and nano-scale, by optimizing the layer-transfer and transfer-bonding techniques. These techniques allow the integration of microfluidic and photonic systems in a single chip for achieving ultracompact lab-on-a-chip concept. To exemplify the integration capability, a monolithic fluorescence detection system is proposed and the approaches to design and fabricate the components, such as a tunable optical filter and optical antennas are addressed. The nanoimprint lithography can also be employed to prepare nanopatterned polymer structures as a template to guide the self-assembly process of nanomaterials, such as single-walled carbon nanotubes (SWNTs). By introducing the surface functionalization, electric field and ultrasonic agitation into the process, we develop a rapid and robust approach for effective placement and alignment of SWNTs. These nanomanufacturing processes are successfully developed and will provide a pathway to the full realization of the lab-on-a-chip concept and significantly contribute to the applications of nanomaterials.

Page generated in 0.0852 seconds