• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Voltammetric Response on a Puller-Made Nanometer-Sized Electrode

Li, Fei, Hunt, Benjamin, Sun, Peng 01 March 2013 (has links)
The method of fabrication of electrodes by using a laser-puller is a commonly used method to produce small electrodes. Simulation shows that the taper-shaped insulation layer of a puller-made electrode has an obvious effect on its voltammetric response, especially when the electrode has a small RG (the ratio of the insulating sheath radius to the electrode radius). The effect of low-pass filtering on the voltammetric response of a very small puller-made electrode has also been studied.
2

Voltammetric Response on a Puller-Made Nanometer-Sized Electrode

Li, Fei, Hunt, Benjamin, Sun, Peng 01 March 2013 (has links)
The method of fabrication of electrodes by using a laser-puller is a commonly used method to produce small electrodes. Simulation shows that the taper-shaped insulation layer of a puller-made electrode has an obvious effect on its voltammetric response, especially when the electrode has a small RG (the ratio of the insulating sheath radius to the electrode radius). The effect of low-pass filtering on the voltammetric response of a very small puller-made electrode has also been studied.
3

Electrochemical Behaviors of Single Gold Nanoparticles

Lakbub, Jude, Pouliwe, Antibe, Kamasah, Alexander, Yang, Cheng, Sun, Peng 01 October 2011 (has links)
In this paper, the electrochemical behaviors of a single gold nanoparticle attached on a nanometer sized electrode have been studied. The single nanoparticle was characterized by using electrochemical methods. Since there is only one nanoparticle on the electrode, unarguable information for that sized particle could be obtained. Our preliminary results show that it becomes more difficult to oxidize gold nanoparticle or reduce gold nanoparticle oxide as the radius of the particle becomes smaller. Also, the peak potential of the reduction of gold nanoparticle oxide is proportional to the reciprocal of the radius of the particle.
4

Fabrication and Characterization of a Disk Ring Shaped Dual Nanometer-Sized Electrode and Its Application to Generation-Collection.

Nimley, Christopher 07 May 2011 (has links) (PDF)
This research reports on the fabrication and characterization of integrated dual nanometer-sized electrodes. The electrodes are made of closely spaced nanometer-sized platinum and gold achieved by inserting and pulling platinum wire in cylindrical glass pipette plated with gold. Cyclic voltammetry has been used to characterize the electrodes. Our results show that both electrodes can work individually and can accomplish generation/collection experiments. Factors that may affect the performance of the electrodes as well as formation mechanism of the gold film by electroless plating are discussed.
5

Fabrication of Chemically Modified Nanometer-sized Gold Electrodes and Their Application in Electrocatalysis at Pt Nanoparticles.

Lakbub, Jude 17 December 2011 (has links) (PDF)
Hydrogen evolution via proton reduction occurs at a high rate at the surface of Pt than at Au electrodes. Using cyclic voltammetry, chemically modified nanometer-sized Au electrodes, prepared by the Laser-Assisted Puller Method, were employed to examine current amplification by electrocalysis at Pt nanoparticles adsorbed on the modified Au electrode surfaces. The electrodes were modified with Self-Assembled Monolayers (SAMs) of cysteamine and soaked in Pt colloid solutions overnight. Monitoring the decrements of the characteristic steady-state catalytic current for proton reduction indicated that aggregates of Pt nanoparticles are adsorbed on the cysteamine monolayers and desorb from them particle by particle. The results also indicate that some particles are strongly attached to the modified electrode surface and do not deplete even after thorough rinsing.
6

Electrochemical Studies of Reactions in Small Volumes Less Than 1 Femto Litres.

Agyekum, Isaac 07 May 2011 (has links) (PDF)
Electrochemical methods have been used to study electron transfer reactions at the interface between an aqueous phase of less than 1 femto liters in volume and a bulk organic phase. The small aqueous phase is formed at the end of a slightly recessed platinum electrode. When a negative potential is applied between the Pt electrode and the aqueous phase, Ru(NH3)63+ in the aqueous phase could be reduced to Ru(NH3)62+. Because the volume of the aqueous phase is very small, the electrochemically formed Ru(NH3)62+ could instantly reach the interface between the aqueous phase and the organic phase which contains 7,7,8,8-Teteracyanoquinodimethane (TCNQ), and be oxidized to form Ru(NH3)63+ by giving electrons to TCNQ at the interface. Our results showed a positive shift in the E1/2 comparing the reaction undertaken in the recessed cavity and the bulk solution.

Page generated in 0.0807 seconds