• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanomédecine régénérative de l'articulation temporo-mandibulaire / Temporomandibular joint regenerative nanomedicine

Van Bellinghen, Xavier 13 March 2019 (has links)
L'articulation temporo-mandibulaire (ATM) est une articulation formée entre l'os temporal et le condyle mandibulaire, et est fréquemment atteinte. Ces affections sont souvent si douloureuses lors d'activités orales fondamentales que les patients ont une qualité de vie diminuée. Les limites de la thérapeutique pour les atteintes des ATM, ont conduit à accroître l'intérêt pour les stratégies régénératives combinant les cellules souches, les "scaffolds" implantables et les molécules bioactives. Réussir dans la régénération fonctionnelle et structurelle de l'ATM constitue un véritable défi. Des stratégies innovantes et des biomatériaux sont absolument essentiels car l'ATM peut être considérée comme l'un des ensembles tissulaires les plus difficiles à régénérer, au vu de sa capacité de guérison limitée, de ses propriétés histologiques et structurelles uniques et de la nécessité de prévenir à long terme ses adhérences ossifiées ou fibreuses. Une première étude in vitro a été menée pour développer un implant nanostructuré pro-régénératif du cartilage portant des cellules souches mésenchymateuses humaines. Les nanoréservoirs de TGFβ3 au sein d’une matrice de collagène de type II de méduse ont montrés leur capacité chondrogénique. Ils ont permis une colonisation, puis une différenciation et une maturation matricielle favorable à la régénération cartilagineuse. Ces résultats sont encourageants vu la difficulté de mise en culture des chondrocytes et la nécessité d'une restauration rapide de la couche cartilagineuse des surfaces articulaires. Une deuxième étude in vivo a été menée pour développer un implant nanostructuré pro-régénératif anti-inflammatoire osseux. Des matrices biomimétiques nanofibreuses et microporeuses de polycaprolactone (PCL) ont été fonctionnalisées par des nanoréservoirs de BMP-2 et d’ibuprofène. Elles ont été implantées sur des modèles murins de lésions osseuses maxillaires. L’accélération de la régénération induite par ces implants nanofonctionnalisés a été mise en évidence sur des souris sauvages et sur des souris mutantes Tabby. Le bénéfice ainsi établi de fonctionnalisation des implants par la BMP-2 et l'ibuprofène revêt un intérêt particulier face aux fréquentes pathologies inflammatoires chroniques de l'ATM. Ces résultats prometteurs devront faire suite à des approches d'orchestration tridimensionnelle des différents tissus de l'ATM. / The temporomandibular joint (TMJ) is an articulation formed between the temporal bone and the mandibular condyle which is commonly affected. These affections are often so painful during fundamental oral activities that patients have lower quality of life. Limitations of therapeutics for severe TMJ diseases have led to increased interest in regenerative strategies combining stem cells, implantable scaffolds and well-targeting bioactive molecules. To succeed in functional and structural regeneration of TMJ is very challenging. Innovative strategies and biomaterials are absolutely crucial because TMJ can be considered as one of the most difficult tissues to regenerate due to its limited healing capacity, its unique histological and structural properties and the necessity for long-term prevention of its ossified or fibrous adhesions. A first in vitro study was conducted to develop a pro-regenerative nanostructured cartilage implant bearing human mesenchymal stem cells. The nanoreservoirs of TGFβ3 within a jellyfish type II collagen matrix showed their chondrogenic capacity. They allowed colonization, then differentiation and matrix maturation favorable to cartilaginous regeneration. These results are encouraging given the difficulty of culturing chondrocytes and the need for rapid restoration of the cartilaginous layer of articular surfaces. A second in vivo study was conducted to develop a nanostructured pro-regenerative anti-inflammatory bone implant. Nanofibrous and microporous biomimetic matrices of polycaprolactone (PCL) were functionalized by nanoreservoirs of BMP-2 and ibuprofen. They have been implanted in mouse models of maxillary bone lesions. The acceleration of regeneration induced by these nanofunctionalized implants has been demonstrated in wild-type mice and Tabby mutant mice. The benefit thus established of functionalization of implants by BMP-2 and ibuprofen is of particular interest in the frequent chronic inflammatory pathologies of TMJ. These promising results follow three-dimensional orchestration approaches for different TMJ tissues.
2

Développement d'implants nanofibreux actifs pour la régénération osseuse / Bioactive nanofibrous implants for bone tissue regeneration

Eap, Sandy 07 October 2014 (has links)
Notre équipe a développé une stratégie innovante de fonctionnalisation d’implants nanofibreux synthétiques à base de nanoréservoirs actifs pour la médecine régénérative osseuse. Notre objectif essentiel est de proposer un implant synthétique, biodégradable, et nanostructuré permettant d’accélérer la réparation du tissu osseux. Ces nouveaux implants synthétiques représentent un choix alternatif aux membranes de collagène d’origine animale. Notre stratégie consiste à construire des nanoréservoirs de chitosane, contenant des facteurs ostéoinducteurs tels que la BMP-2 afin d’enrober les nanofibres de nos implants. L’implant synthétique et biomimétique a été conçu à partir du le poly(ε-caprolactone) (PCL),polymère biocompatible et biodégradable approuvé par la FDA, et élaboré grâce à la technique de l’electrospinning afin de mimer la matrice extracellulaire. L’optimisation de ce procédé a permis la mise en oeuvre d’implants d’épaisseurs différentes (jusqu’à 10mm). La double fonctionnalisation de l’implant a permis de le rendre bioactif et vivant en utilisant la combinaison de facteur de croissance et de cellules souches mésenchymateuses. L’efficacité de la double fonctionnalisation des implants de PCL a ainsi été mise en évidence par l’accélération de la régénération osseuse in vivo.L’activité de ces implants fonctionnalisés de nanoréservoirs bioactifs est en cours d’analyse dans le cadre de tests précliniques pour une application maxillo-faciale, parodontale et orthopédique en vu d’obtenir un marquage CE. De plus, une start-up (ARTiOS NanoMed) basée sur cette nanotechnologie a été crée. En conclusion, nous pensons que la technologie développée par notre laboratoire a permis une avancée dans le domaine de la régénération osseuse et que cette technologie présente un fort potentiel d’application en clinique. / Our team has developped a novel and unique strategy to functionnalize nanofibrous and synthetic implants based on active nanoreservoirs for bone regeneration. We propose a new synthetic biodegradable and nanostructured implant to accelarate restoration of bone tissue. These new implants could replace collagen membranes from animal origin. The nanoreservoirs are based on chitosan containing osteoinductive growth factors such as BMP-2. Poly(ε-caprolactone) (PCL) is a biodegradable and biocompatible polymer approved by FDA and has been used to produce the synthetic and biomimetic implants by electrospinning in order to mimic the bone extracellular matrix. Optimization of this process has allowed the elaboration of nanofibrous implants with different thicknesses reaching 10 mm. Using the combination of growth factors and mesenchymal stem cells in a double functionalization created a bioactive and living implant. This strategy has been validated in vitro and in vivo thanks to bone site implantation in murin model. Acceleration of bone regeneration in vivo has brought to light the efficiency of the double functionalization onto the PCL implants.The functionalized implants bioactivity is still currently in study for pre-clinical trials in order to obtain authorization for applications in maxillo-facial, parodontal, and orthopaedic fields. Moerover, astat-up (ARTiOS NanoMed) based on this nanotechnology has been founded.To conclude, we believe that our nanotechnology could lead to a new generation of engineered bone implants which has a great potential to be used in the clinic.

Page generated in 0.0633 seconds