Spelling suggestions: "subject:"nanostructures ferritin allow (NFA)""
1 |
Studies on Sintering Silicon Carbide-Nanostructured Ferritic Alloy Composites for Nuclear ApplicationsHu, Zhihao 22 July 2016 (has links)
Nanostructured ferritic alloy and silicon carbide composite materials (NFA-SiC) were sintered with spark plasma sintering (SPS) method and systematically investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as density and Vickers hardness tests. Pure NFA, pure SiC, and their composites NFA-SiC with different compositions (2.5 vol% NFA-97.5 vol% SiC, 5 vol% NFA-95 vol% SiC, 97.5 vol% NFA-2.5 vol% SiC, and 95 vol% NFA-5 vol% SiC) were successfully sintered through SPS.
In the high-NFA samples, pure NFA and NFA-SiC, minor gamma-Fe phase formation from the main alfa-Fe matrix occurred in pure NFA 950 degree C and 1000 degree C. The densities of the pure NFA and NFA-SiC composites increased with sintering temperature but decreased with SiC content. The Vickers hardness of the pure NFA and NFA-SiC composites was related to density and phase composition. In the high-SiC samples, NFA addition of 2.5 vol% can achieve full densification for the NFA-SiC samples at relative low temperatures. With the increase in sintering temperature, the Vickers hardness of the pure SiC and NFA-SiC composite samples were enhanced. However, the NFA-SiC composites had relative lower hardness than the pure SiC samples. A carbon layer was introduced in the NFA particles to prevent the reaction between NFA and SiC. Results indicated that the carbon layer was effective up to 1050 degree C sintering temperature. Green samples of gradient-structured NFA-SiC composites were successfully fabricated through slip casting of an NFA-SiC co-suspension. / Master of Science
|
Page generated in 0.1082 seconds