71 |
Self-Assembly of Polymer Brush-Grafted Silica NanoparticlesTang, Saide 27 January 2016 (has links)
No description available.
|
72 |
Size, Charge and Dose Dependent In-vitro Kinetics of Polystyrene NanoparticlesAbdEllatif, Yasmine 01 January 2018 (has links) (PDF)
The aim of the study described herein is to quantify the in-vitro kinetics of internalization of polystyrene nanoparticles (PS NPs) by cells. We used different charges, sizes and doses of fluorescently labelled PS NPs. Nanoparticles were characterized with UV-Vis, Fluorescence emission Dynamic Light Scattering (DLS) and Zeta potential for knowing their absorption, fluorescence spectra, size, charge, respectively. Additionally, cell viability was tested to know the toxicity of PS NPs. The quantitative uptake, the kinetics profile and rate of uptake were studied by using a new in-vitro fluorescence assay. This was achieved quantitatively and qualitatively by fluorescent plate reader and confocal imaging, respectively. It was found that the amine PS NPs are higher in cytotoxicity than the carboxy PS NPs due to the proton sponge phenomenon. It was observed that the fraction uptake of PS NPs changes by changing the physiochemical properties as charge, size & dose. The fraction uptake of neutral and amine PS NPs was higher than that of carboxy PS NPs. For the neutral PS NPs, the uptake depends on the macropinocytosis. For the amine PS NPs, the uptake depends on the electrostatic interaction and the rapid regeneration of new binding sites. Regarding the dose of PS NPs, for the amine PS NPs, it was found that the concentrations lower and higher than 5nM had lower fraction uptake, because the 5nM achieved the balance between the available number of binding sites and the rapid regeneration of new binding sites. For the kinetics profile of the amine and carboxy PS NPs, by comparing both of them, it was observed that the rate of uptake of applied doses lower than 5nM was different, but higher than 5nM was similar. However, for the neutral Ps NPs, they exhibit a steady state of rate of uptake in between the amine and carboxy PS NPs. Also, it was confirmed by the confocal images that as the concentration of amine PS NPs increase, the stress on the cells increase, leading to the cell death. These results were aligned with the results obtained from the cytotoxicity test.
|
73 |
DNA Nanotechnology- Architechtures Designed with DNAJanuary 2012 (has links)
abstract: As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict. / Dissertation/Thesis / Ph.D. Chemistry 2012
|
74 |
Toward Sustainable Anticipatory Governance: Analyzing and Assessing Nanotechnology Innovation ProcessesJanuary 2013 (has links)
abstract: Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually linked anticipatory governance and sustainability science: to understand the role of technology in complex problems our societies face; to anticipate negative consequences of technological innovation; and to promote long-term oriented and responsible governance of technologies. This dissertation advances this link conceptually and empirically, focusing on nanotechnology and urban sustainability challenges. The guiding question for this dissertation research is: How can nanotechnology be innovated and governed in responsible ways and with sustainable outcomes? The dissertation: analyzes the nanotechnology innovation process from an actor- and activities-oriented perspective (Chapter 2); assesses this innovation process from a comprehensive perspective on sustainable governance (Chapter 3); constructs a small set of future scenarios to consider future implications of different nanotechnology governance models (Chapter 4); and appraises the amenability of sustainability problems to nanotechnological interventions (Chapter 5). The four studies are based on data collected through literature review, document analysis, participant observation, interviews, workshops, and walking audits, as part of process analysis, scenario construction, and technology assessment. Research was conducted in collaboration with representatives from industry, government agencies, and civic organizations. The empirical parts of the four studies focus on Metropolitan Phoenix. Findings suggest that: predefined mandates and economic goals dominate the nanotechnology innovation process; normative responsibilities identified by risk governance, sustainability-oriented governance, and anticipatory governance are infrequently considered in the nanotechnology innovation process; different governance models will have major impacts on the role and effects of nanotechnology in cities in the future; and nanotechnologies, currently, do not effectively address the root causes of urban sustainability challenges and require complementary solution approaches. This dissertation contributes to the concepts of anticipatory governance and sustainability science on how to constructively guide nanotechnological innovation in order to harvest its positive potential and safeguard against negative consequences. / Dissertation/Thesis / Ph.D. Sustainability 2013
|
75 |
16-bit Digital Adder Design in 250nm and 64-bit Digital Comparator Design in 90nm CMOS TechnologiesBoppana, Naga Venkata Vijaya Krishna January 2014 (has links)
No description available.
|
76 |
Manipulation of Gold Nanorod Physicochemical Properties to Enhance Biocompatibility, Uptake and Intracellular Preservation of Optical Properties for Bio-Imaging and Plasmonic Photo-Therapeutic ApplicationsPolito, Anthony B., III 31 August 2015 (has links)
No description available.
|
77 |
Identifying Peptides that Bind to Human Serum Albumin Using Phage Display for the Development of Sensors that Detect Injury in Military PersonnelRees, William D. 07 September 2016 (has links)
No description available.
|
78 |
Detecting Radiation Pressure in Waveguides Using Microelectromechanical ResonatorsPope, Christopher R. P. 04 1900 (has links)
<p>The phenomenon of radiation pressure has fascinated scientists since it was first proposed by Maxwell in the late 19th century. Numerous experiments involving optical forces have been carried out, however the optical force acting on a curved waveguide does not appear to have been previously investigated. An experiment to measure the force acting on a waveguide due to the optical power it contains is proposed here. This experiment takes advantage of the sensitivity of MicroElectroMechanical Systems (MEMS) and the performance of silicon integrated optics in a single hybrid device.</p> <p>Devices are fabricated from silicon-on-insulator (SOI) wafers using conventional micromachining techniques. Anisotropic alkali etches are used to produce smooth vertical side-walls for a mechanical structure and a rib waveguide. An analysis of the electrical systems and measurement techniques is provided. Using these techniques, the resonant operation of the devices is demonstrated by means of capacitive actuation and sensing. The application of this system to the measurement of radiation pressure is discussed.</p> / Master of Applied Science (MASc)
|
79 |
CARBON NANOTUBE/GRAPHENE COMPOSITE SEMICONDUCTORS FOR HIGH PERFORMANCE POLYTHIOPHENE ORGANIC THIN FILM TRANSISTORSDerry, Cameron E. 04 1900 (has links)
<p>Incorporating nanoparticles within a polymer to improve the mobility of the filmis one promising way of creating organic thin film transistors (OTFTs) with large mobilities that could be applicable in real world applications. Carbon nanotubes (CNTs)and graphene nanoplatelets (GNPs) are extensively studied for this application. In order to overcome their tendency to aggregate, a method for creating a stable dispersion within both the solution phase and the film is needed. Here an easy method is established for creating a stable dispersion of CNTs or GNPs within a polymer solution which results in excellent OTFT mobility.A non-percolating network of non-covalently functionalized single walled carbon nanotubes was embedded within poly[5,5’-bis(3-dodecyl-2-thienyl)-2,2’bithiophene](PQT-12) thin films for the purpose of enhancing field effect mobility in thin film transistors. The host polymer was used to stabilize the nanotubes in suspension by π orbital overlap caused by simple application of ultrasonication. The stable nanotube suspension was cast into two different device architectures both with excellent mobilities and on/off ratios. The effect of nanotube content on polymer interaction within suspension, film morphology and electrical properties are discussed. A CNT nanocomposite OTFT with enhanced mobility was also tested for applications in vapour sensing. A method is also presented for the creation of graphene nano-platelets (GNPs) for implementation in nano-composite films. Heat treatment of expandable graphite within a vacuum evaporation chamber yielded chemically pure GNPs of a few nanometer thickness. Exfoliating expandable graphite without heat treatment resulted in even higher concentrations but chemically impure GNPs. The material was non-covalently stabilizedwith PQT-12 in a similar method to CNTs and used to create OTFTs with enhanced mobility. The effect of heat treatment parameters and exfoliation conditions on GNP thickness, size and chemical purity are discussed, as well as effect of GNP content on mobility and on/off ratio.</p> / Master of Applied Science (MASc)
|
80 |
A Field-Scale Simulation of the Reversible Nanoparticle Adsorption for Enhancing Oil Recovery Using Hydrophilic NanofluidsCao, Liyuan 19 February 2016 (has links)
<p>In order to develop and apply nanotechnology in oil industry, nanoparticles transport in porous media has been studied in the past few years. Theoretical modeling were carried out to evaluate nanoparticle mobility and investigate nanoparticle retention mechanism. In this study, a simulator based on Ju and Fan’s mathematical model was used to study nanoparticles transport in porous media on a reservoir scale. The simulator was verified with two simulation software, Eclipse from Schlumberger and MNM1D (Micro- and Nanoparticle transport Model in porous media in 1D geometry) developed by Tosco et al. Different injection scenarios were simulated: continuous injection, slug injection, and postflush. The effect of injection time, injection rate, and slug size on oil recovery were studied. The result discovered that when nanofluids flooding is used after water flooding as tertiary recovery method, early nanofluids injection will lead to higher oil recovery, but with more nanoparticle loss. Higher injection rate of nanofluids could help improve the flooding efficiency, but not the ultimate oil recovery for field development. Also, it can cause more nanoparticle loss. Brine water postflush is recommended when doing nanoflooding. It can significantly improve the recovery of nanoparticles, and for a homogeneous or heterogeneous reservoir, oil recovery is better compared to water flooding. </p>
|
Page generated in 0.054 seconds