• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L’influence d’une surface nanoporeuse de titane sur l’activité de cellules ostéoblastiques

Guadarrama Bello, Dainelys 04 1900 (has links)
Afin d’améliorer la performance et l’intégration des biomatériaux dans le tissu hôte, l’intérêt actuel est d’exploiter des approches de nanotechnologie pour produire des biomatériaux possédant des surfaces bioactives. Il est connu que l’interaction des cellules avec la surface des biomatériaux détermine la réponse du tissu hôte et le succès d’un implant. La topographie est l'un des principaux facteurs influençant l'activité fonctionnelle des cellules en contact avec des biomatériaux. Cependant, les mécanismes impliqués demeurent imprécis. Notre groupe a exploité un traitement chimique simple afin de créer des surfaces de titane nanoporeuses uniques qui expriment une influence cellulaire sélective, favorisant ainsi la formation osseuse in vivo et in vitro. Dans ce travail, nous avons réduit la durée du traitement afin d’obtenir une surface nanotopographique mono-planaire, puis évaluer l’influence d’une telle surface sur la formation par des cellules pré-ostéoblastiques MC3T3-E1 d’adhésions focales et de filopodes, ainsi que sur l’expression de gènes codant pour différentes protéines associées à l’adhésion et la signalisation cellulaire. Des disques de titane commercialement pur (cp-Ti) ont été traités avec un mélange d’acide sulfurique et de peroxyde d’hydrogène (50/50 v/v) pendant 1.5 heures. La caractérisation par microscopie électronique à balayage à haute résolution et pour microscopie à force atomique a confirmé la formation d’une surface effectivement mono-planaire caractérisée par des nanopores d’une taille moyenne de 20 ± 5 nm. Les cellules ont été mises en culture pour des périodes de 6, 24 et 72 heures sur des disques contrôles polis et avec une surface nanoporeuse. L'analyse de l’expression de la vinculine par immunofluorescence a révélé un plus grand nombre d’adhésions focales par les cellules sur la surface traitée. Le PCR quantitatif a également montré une augmentation significative de l'expression des gènes pour différents marqueurs d'adhésions focales, telles que paxilline, taline, et différentes intégrines comme par exemple les intégrines α1, β1 et α5. Par microscopie électronique à balayage, les cellules sur la surface nanoporeuse révèlent une présence plus importante de filopodes vis à vis des surfaces contrôles. Ces structures affichent de manière unique de très petites protrusions membranaires latérales d’entre 10-15 nm qui suivent les bords des nanopores. L’augmentation des adhésions focales, l'abondance des filopodes et de leurs petites protrusions pourraient engendre interaction accrue avec la surface et modifier les relations biomécaniques à l’échelle nanométrique pour déclencher des cascade régulant la prolifération cellulaire. / To improve the performance and integration of biomaterials in the host tissue, the focus is presently on exploiting nanotechnology approaches to produce biomaterials with bioactive surfaces. It is known that the cell-biomaterial interactions determine the response of the host tissue and therefore the success of implants. Topography is a key factor that influences the functional activity of cells; however, the mechanisms implicated remain unclear. Our group has exploited a simple chemical treatment to create unique nanoporous titanium surfaces that selectively influence cell behaviour and favor osteogenic activity both in vitro and in vivo. In this work, we have reduced treatment time in order to obtain a monoplanar nanostructured surface, and we have evaluated its influence on the formation of focal adhesions, filopodia, and on gene expression for different cell adhesion and signaling proteins by MC3T3-E1 pre-osteoblastic cells. Commercially pure titanium (cp-Ti) was treated with a mixture of H2SO4/H2O2 (50/50 v/v) for 1.5h. Characterization by high-resolution field-emission scanning electron microscopy and atomic force microscopy characterization showed the formation of a nanoporous surface with a mean pore diameter of 20 ± 5 nm. Cells were cultured and plated on polished (control) and nanotextured discs for periods of 6, 24 and 72 hours. Immunofluorescence analysis of vinculin expression revealed the formation of more focal adhesions by cells seeded on nanostructured surfaces. Quantitative PCR likewise showed significant increase of gene expression for various focal adhesion markers, including paxillin, talin, and different integrins such as integrin α1, β1 and α5. As compared to controls, scanning electron microscopy of cells on the treated surface revealed the presence of more filopodia. These uniquely displayed very small lateral membrane protrusions between 10-15 nm that appeared to follow the walls of the nanopores. Together with the increase in focal adhesions, the abundance of filopodia and associated protrusions could contribute to the adhesive interaction with the surface and modify the nanoscale biomechanical relationships to trigger cellular cascades regulating cell proliferation.
2

Étude structurale, biomécanique et génétique des interactions cellulaires avec une surface de titane modifiée à l’échelle nanométrique

Guadarrama Bello, Dainelys 04 1900 (has links)
Le titane (Ti) est largement utilisé en orthopédie et médecine dentaire. Ce matériau présente d´excellentes propriétés mécaniques, est biocompatible et résiste à la corrosion. L’interaction entre les cellules et la surface d’un implant joue un rôle décisif dans l’ostéointégration. Malgré la grande variété d’études que nous trouvons dans la littérature, le comportement des cellules en contact avec des matériaux implantables comme le Ti n’est toujours pas élucidé à toutes les échelles topographiques. Notre laboratoire a développé une méthode de modification physico-chimique de la surface de métaux à intérêt médical. Cette méthode génère des surfaces nanoporeuses qui favorisent la différenciation de cellules souches, affectent le comportement cellulaire de façon différentielle, promeuvent la formation osseuse in vitro et in vivo, et qui ont une capacité antibactérienne. Afin de mieux comprendre comment cette surface influence le comportement cellulaire, nous avons étudié leur influence sur la formation et la maturation des adhésions focales (FAs, de l’anglais) et la formation des filopodes. De plus, nous avons examiné comment les caractéristiques physico-chimiques de la surface obtenue guident l’expression génique des protéines associées aux FAs et aux filopodes en utilisant différentes lignées cellulaires. Finalement, afin de mieux comprendre la biomécanique de la cellule, la force d’adhésion à la surface des filopodes a été déterminée à l’aide de la microscopie à force atomique (AFM). Des disques de Ti commercialement pur (Cp-Ti) ont été polis a fini miroir (Ti-Control), une partie des disques a été traité avec un mélange d’acide sulfurique et de peroxyde d’hydrogène pour créer une surface nanostructurée poreuse (Ti-Nano). L’influence de la nanoporosité, de la cristallinité et la mouillabilité de cette surface sur des cellules pre-ostéoblastiques de souris (MC3T3) et des bactéries a été évalué par la microscopie électronique à balayage (MEB) et par immunofluorescence (IF). Nous avons ensuite utilisé une lignée cellulaire épithéliale (CHO-K1) qui exprime la paxilline (une protéine des FAs) de type sauvage ou la paxilline avec des mutations. De plus, la force d’interaction des filopodes avec la surface a été quantifié en mesurant la force latérale nécessaire pour les déplacer avec une pointe d’AFM. Finalement, la centrifugation a été utilisée pour étudier les changements fonctionnels des cellules MC3T3. L’analyse du comportement des cellules MC3T3 sur des surfaces amorphes et cristallines n'a pas montré de différence par rapport au nombre des cellules ou la quantité des FAs. La cristallinité de la couche superficielle n’avait également aucune incidence sur l’adhésion bactérienne. Les deux lignées cellulaires utilisées ont montré une présence abondante de filopodes avec des nanoprotrusions latérales en réponse à la nanoporosité. La taille et la forme des cellules CHO-K1 ont été grandement affectées par la topographie. L’expression génique des protéines associées aux différents marqueurs des FAs et aux protrusions a été aussi significativement augmentée sur la surface nanoporeuse, quel que soit le type de cellule. Les filopodes sur Ti-Nano ont montré une plus grande résistance au détachement latéral, ce qui indique qu'ils adhèrent à la surface avec plus de force. Également, l’analyse par MEB a révélé une restructuration de la membrane cellulaire accompagnée d’un changement de la forme cellulaire après centrifugation. Parce que les mitochondries fournissent de l’énergie pour les processus cellulaires, l’organisation du réseau mitochondrial a été influencée aussi par la topographie de surface et la centrifugation. Bien qu’il ne puisse pas être exclu que la cristallinité et la mouillabilité de la surface contribuent dans une certaine mesure à déterminer le comportement des cellules, nos résultats suggèrent que les caractéristiques physiques des surfaces représentent le principal déterminant. Nous avons démontré aussi, pour la première fois, que la topographie de surface peut modifier l’interaction adhésive d’une structure subcellulaire qui est fondamentale dans la détection des caractéristiques physico-chimiques des surfaces. En conclusion, nos résultats montrent que la topographie de surface peut modifier des propriétés fondamentales dans les cellules. Dans leur ensemble, ils soulèvent la possibilité que les surfaces nanostructurées puissent être utilisées non seulement pour guider/accélérer l’intégration de biomatériaux dans des conditions normales, mais également dans des situations où l’activité cellulaire est compromise ou également pour les prothèses soumises à des charges externes, telles que les implants orthopédiques et dentaires. / Titanium (Ti) is widely used in orthopedics and dentistry. This material has excellent mechanical properties, is biocompatible and corrosion resistant. The interaction between the cells and the surface of an implant plays a key role in osseointegration. Despite the wide variety of studies found in the literature, the behavior of cells in contact with implantable materials such as Ti is not yet fully elucidated at all topographic scales. Our laboratory has developed a method for the physicochemical modification of the surface of medically relevant metals. This method generates nanoporous surfaces that promote stem cell differentiation, differentially affect cellular behavior, promote bone formation in vitro and in vivo and have antibacterial capacity. To better understand how this surface influences cell behavior, we studied their influence on the formation and maturation of focal adhesions (FAs) and filopodia formation. Furthermore, we examined how the physicochemical characteristics of the resulting surface guide the gene expression of proteins associated with FAs and filopodia using different cell lines. Finally, to better understand the biomechanics of the cell, the adhesion strength of filopodia to the surface was determined using atomic force microscopy (AFM). Commercially pure Ti discs (Cp-Ti) were polished to a mirror finish (Ti-Control), some of the polished discs were treated with a mixture of sulfuric acid and hydrogen peroxide to create a nanostructured surface (Ti-Nano). The influence of nanoporosity, crystallinity and wettability of this surface on mouse pre-osteoblastic cells (MC3T3) and bacteria was evaluated by scanning electron microscopy (SEM) and immunofluorescence. Then, to evaluate the response to nanotopography, we used an epithelial cell line (CHO-K1) that expresses wild type paxillin (a protein of FAs) or paxillin with mutations. In addition, the interaction forces of the filopodia with the surface were quantified by measuring the lateral force required to displace these structures from the surface with an AFM tip. Finally, centrifugation was used to study functional changes in MC3T3 cells. Analysis of the behavior of MC3T3 cells on amorphous and crystalline surfaces showed no difference in cell number or the number of focal adhesions. The crystallinity of the surface layers also had no effect on bacterial adhesion. Both cell lines used showed abundant presence of filopodia 4 with lateral nanoprotrusions in response to nanoporosity. The size and shape of CHO-K1 cells was greatly affected by the topography. Gene expression of proteins associated with different focal adhesion markers and protrusions was also significantly increased on the nanoporous surface, regardless of cell type. Filopodia on the Ti-Nano showed greater resistance to lateral detachment force, indicating that they adhere to the surface with greater strength. Also, SEM analysis revealed a restructuring of the cell membrane accompanied by a corresponding change in cell shape after centrifugation. Because mitochondria provide energy for cell processes, the organization of the mitochondrial network was also influenced by surface topography and centrifugation. Although it cannot be excluded that surface crystallinity and wettability contribute to some extent to determining cell behavior, our results suggest that the physical characteristics of the surfaces represent the main determinant. We have also shown for the first time that surface topography can modify the adhesive interaction of a subcellular structure that is fundamental in the detection of the physicochemical characteristics of surfaces. In conclusion, our results show that surface topography can modify fundamental properties in cells. Together, they raise the possibility that nanostructured surfaces can be used not only to guide/accelerate the integration of biomaterials under normal conditions, but also in situations where cellular activity is compromised or also for prostheses under external loads, such as orthopedic and dental implants.

Page generated in 0.0462 seconds