• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

Du, Yicheng 07 August 2010 (has links)
Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers’ intrinsic properties cause these issues: 1) the mechanical property variation; 2) moisture uptake by natural fibers and their composites; 3) lack of sound, cost-effective, environmentriendly fiber-matrix compounding processes; 4) incompatibility between natural fibers and polymer matrices; and 5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite’s tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite’s water absorption properties were tested. Surface-coating and edge-sealing significantly reduced composite water resistance properties. Encapsulation was a practical method to improve composite water resistance properties. The molding pressure and styrene concentrations on composite and matrix properties were evaluated. Laser and plasma treatment improved fiber-to-matrix adhesion.
2

Study of improving interfacial strength between matrix and reinforcement for green composites / グリーンコンポジットのマトリックスと強化材の界面強度の向上に関する研究 / グリーン コンポジット ノ マトリックス ト キョウカザイ ノ カイメン キョウド ノ コウジョウ ニカンスル ケンキュウ

南 基法, Gibeop Nam 22 March 2015 (has links)
In this study, several types of modified methods were tried for improving natural fiber reinforced composites and also three kind of natural fibers were used for reinforced composite. Plasma polymerization increased fiber tensile and composites mechanical properties. It is higher effect than alkali treatment. Resin impregnation was expected cheaper method than plasma polymerization. Polyvinyl Alcohol resin impregnation method can increase fiber tensile strength, interfacial shear strength between fiber and composites mechanical properties. And with Bamboo/polypropylene/maleic anhydride polypropylene water absorption ratio also can decrease. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University

Page generated in 0.0839 seconds