51 |
Natural language interaction with robotsWalker, Alden. January 2007 (has links)
Thesis (B.A.)--Haverford College, Dept. of Computer Science, Swarthmore College. Dept. of Linguistics, 2007. / Includes bibliographical references.
|
52 |
Advanced Intranet Search EngineNarayan, Nitesh January 2009 (has links)
<p>Information retrieval has been a prevasive part of human society since its existence.With the advent of internet and World wide Web it became an extensive area of researchand major foucs, which lead to development of various search engines to locate the de-sired information, mostly for globally connected computer networks viz. internet.Butthere is another major part of computer network viz. intranet, which has not seen muchof advancement in information retrieval approaches, in spite of being a major source ofinformation within a large number of organizations.Most common technique for intranet based search engines is still mere database-centric. Thus practically intranets are unable to avail the benefits of sophisticated tech-niques that have been developed for internet based search engines without exposing thedata to commercial search engines.In this Master level thesis we propose a ”state of the art architecture” for an advancedsearch engine for intranet which is capable of dealing with continuously growing sizeof intranets knowledge base. This search engine employs lexical processing of doc-umetns,where documents are indexed and searched based on standalone terms or key-words, along with the semantic processing of the documents where the context of thewords and the relationship among them is given more importance.Combining lexical and semantic processing of the documents give an effective ap-proach to handle navigational queries along with research queries, opposite to the modernsearch engines which either uses lexical processing or semantic processing (or one as themajor) of the documents. We give equal importance to both the approaches in our design,considering best of the both world.This work also takes into account various widely acclaimed concepts like inferencerules, ontologies and active feedback from the user community to continuously enhanceand improve the quality of search results along with the possibility to infer and deducenew knowledge from the existing one, while preparing for the advent of semantic web.</p>
|
53 |
Parsing and Linguistic ExplanationBerwick, Robert C., Weinberg, Amy S. 01 April 1985 (has links)
This article summarizes and extends recent results linking deterministic parsing to observed "locality principles" in syntax. It also argues that grammatical theories based on explicit phrase structure rules are unlikely to provide comparable explanations of why natural languages are built the way they are.
|
54 |
Uniform multilingual sentence generation using flexible lexico-grammatical resourcesKozlowski, Raymond. January 2006 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisors: Kathleen F. McCoy and Vijay K. Shanker, Computer & Information Sciences. Includes bibliographical references.
|
55 |
Prepositional Phrase Attachment Disambiguation Using WordNetSpitzer, Claus January 2006 (has links)
In this thesis we use a knowledge-based approach to disambiguating prepositional phrase attachments in English sentences. This method was first introduced by S. M. Harabagiu. The Penn Treebank corpus is used as the training text. We extract 4-tuples of the form <em>VP</em>, <em>NP</em><sub>1</sub>, Prep, <em>NP</em><sub>2</sub> and sort them into classes according to the semantic relationships between parts of each tuple. These relationships are extracted from WordNet. Classes are sorted into different tiers based on the strictness of their semantic relationship. Disambiguation of prepositional phrase attachments can be cast as a constraint satisfaction problem, where the tiers of extracted classes act as the constraints. Satisfaction is achieved when the strictest possible tier unanimously indicates one kind of attachment. The most challenging kind of problems for disambiguation of prepositional phrases are ones where the prepositional phrase may attach to either the closest verb or noun. <br /><br /> We first demonstrate that the best approach to extracting tuples from parsed texts is a top-down postorder traversal algorithm. Following that, the various challenges in forming the prepositional classes utilizing WordNet semantic relations are described. We then discuss the actions that need to be taken towards applying the prepositional classes to the disambiguation task. A novel application of this method is also discussed, by which the tuples to be disambiguated are also expanded via WordNet, thus introducing a client-side application of the algorithms utilized to build prepositional classes. Finally, we present results of different variants of our disambiguating algorithm, contrasting the precision and recall of various combinations of constraints, and comparing our algorithm to a baseline method that falls back to attaching a prepositional phrase to the closest left phrase. Our conclusion is that our algorithm provides improved performance compared to the baseline and is therefore a useful new method of performing knowledge-based disambiguation of prepositional phrase attachments.
|
56 |
Advanced Intranet Search EngineNarayan, Nitesh January 2009 (has links)
Information retrieval has been a prevasive part of human society since its existence.With the advent of internet and World wide Web it became an extensive area of researchand major foucs, which lead to development of various search engines to locate the de-sired information, mostly for globally connected computer networks viz. internet.Butthere is another major part of computer network viz. intranet, which has not seen muchof advancement in information retrieval approaches, in spite of being a major source ofinformation within a large number of organizations.Most common technique for intranet based search engines is still mere database-centric. Thus practically intranets are unable to avail the benefits of sophisticated tech-niques that have been developed for internet based search engines without exposing thedata to commercial search engines.In this Master level thesis we propose a ”state of the art architecture” for an advancedsearch engine for intranet which is capable of dealing with continuously growing sizeof intranets knowledge base. This search engine employs lexical processing of doc-umetns,where documents are indexed and searched based on standalone terms or key-words, along with the semantic processing of the documents where the context of thewords and the relationship among them is given more importance.Combining lexical and semantic processing of the documents give an effective ap-proach to handle navigational queries along with research queries, opposite to the modernsearch engines which either uses lexical processing or semantic processing (or one as themajor) of the documents. We give equal importance to both the approaches in our design,considering best of the both world.This work also takes into account various widely acclaimed concepts like inferencerules, ontologies and active feedback from the user community to continuously enhanceand improve the quality of search results along with the possibility to infer and deducenew knowledge from the existing one, while preparing for the advent of semantic web.
|
57 |
Prepositional Phrase Attachment Disambiguation Using WordNetSpitzer, Claus January 2006 (has links)
In this thesis we use a knowledge-based approach to disambiguating prepositional phrase attachments in English sentences. This method was first introduced by S. M. Harabagiu. The Penn Treebank corpus is used as the training text. We extract 4-tuples of the form <em>VP</em>, <em>NP</em><sub>1</sub>, Prep, <em>NP</em><sub>2</sub> and sort them into classes according to the semantic relationships between parts of each tuple. These relationships are extracted from WordNet. Classes are sorted into different tiers based on the strictness of their semantic relationship. Disambiguation of prepositional phrase attachments can be cast as a constraint satisfaction problem, where the tiers of extracted classes act as the constraints. Satisfaction is achieved when the strictest possible tier unanimously indicates one kind of attachment. The most challenging kind of problems for disambiguation of prepositional phrases are ones where the prepositional phrase may attach to either the closest verb or noun. <br /><br /> We first demonstrate that the best approach to extracting tuples from parsed texts is a top-down postorder traversal algorithm. Following that, the various challenges in forming the prepositional classes utilizing WordNet semantic relations are described. We then discuss the actions that need to be taken towards applying the prepositional classes to the disambiguation task. A novel application of this method is also discussed, by which the tuples to be disambiguated are also expanded via WordNet, thus introducing a client-side application of the algorithms utilized to build prepositional classes. Finally, we present results of different variants of our disambiguating algorithm, contrasting the precision and recall of various combinations of constraints, and comparing our algorithm to a baseline method that falls back to attaching a prepositional phrase to the closest left phrase. Our conclusion is that our algorithm provides improved performance compared to the baseline and is therefore a useful new method of performing knowledge-based disambiguation of prepositional phrase attachments.
|
58 |
Flexible speech synthesis using weighted finite-state transducers /Bulyko, Ivan. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (p. 110-123).
|
59 |
Logical specification of finite-state transductions for natural language processingVaillette, Nathan, January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains xv, 253 p.; also includes graphics. Includes abstract and vita. Advisor: Chris Brew, Dept. of Linguistics. Includes bibliographical references (p. 245-253).
|
60 |
Minimally supervised induction of morphology through bitextsMoon, Taesun, Ph. D. 17 January 2013 (has links)
A knowledge of morphology can be useful for many natural language processing systems. Thus, much effort has been expended in developing accurate computational tools for morphology that lemmatize, segment and generate new forms. The most powerful and accurate of these have been manually encoded, such endeavors being without exception expensive and time-consuming. There have been consequently many attempts to reduce this cost in the development of morphological systems through the development of unsupervised or minimally supervised algorithms and learning methods for acquisition of morphology. These efforts have yet to produce a tool that approaches the performance of manually encoded systems.
Here, I present a strategy for dealing with morphological clustering and segmentation in a minimally supervised manner but one that will be more linguistically informed than previous unsupervised approaches. That is, this study will attempt to induce clusters of words from an unannotated text that are inflectional variants of each other. Then a set of inflectional suffixes by part-of-speech will be induced from these clusters. This level of detail is made possible by a method known as alignment and transfer (AT), among other names, an approach that uses aligned bitexts to transfer linguistic resources developed for one language–the source language–to another language–the target. This approach has a further advantage in that it allows a reduction in the amount of training data without a significant degradation in performance making it useful in applications targeted at data collected from endangered languages. In the current study, however, I use English as the source and German as the target for ease of evaluation and for certain typlogical properties of German. The two main tasks, that of clustering and segmentation, are approached as sequential tasks with the clustering informing the segmentation to allow for greater accuracy in morphological analysis.
While the performance of these methods does not exceed the current roster of unsupervised or minimally supervised approaches to morphology acquisition, it attempts to integrate more learning methods than previous studies. Furthermore, it attempts to learn inflectional morphology as opposed to derivational morphology, which is a crucial distinction in linguistics. / text
|
Page generated in 0.1551 seconds