101 |
Toward an Optical Brain-computer Interface based on Consciously-modulated Prefrontal Hemodynamic ActivityPower, Sarah Dianne 19 December 2012 (has links)
Brain-computer interface (BCI) technologies allow users to control external devices through brain activity alone, circumventing the somatic nervous system and the need for overt physical movement. BCIs may potentially benefit individuals with severe neuromuscular disorders who experience significant, and often total, loss of voluntary muscle control (e.g. amyotrophic lateral sclerosis, multiple sclerosis, brainstem stroke). Though a majority of BCI research to date has focused on electroencephalography (EEG) for brain signal acquisition, recently researchers have noted the potential of an optical imaging technology called near-infrared spectroscopy (NIRS) for BCI applications.
This thesis investigates the feasibility of a practical, online optical BCI based on conscious modulation of prefrontal cortex activity through the performance of different cognitive tasks, specifically mental arithmetic (MA) and mental singing (MS). The thesis comprises five studies, each representing a step toward the realization of a practical optical BCI. The first study demonstrates the feasibility of a two-choice synchronized optical BCI based on intentional control states corresponding to MA and MS. The second study explores a more user-friendly alternative - a two-choice system-paced BCI supporting a single intentional control state (either MA or MS) and a natural baseline, or "no-control (NC)", state. The third study investigates the feasibility of a three-choice system-paced BCI supporting both MA and MS, as well as the NC state. The fourth study examines the consistency with which the relevant mental states can be differentiated over multiple sessions. The first four studies involve healthy adult participants; in the final study, the feasibility of optical BCI use by a user with Duchenne muscular dystrophy is explored.
In the first study, MA and MS were classified with an average accuracy of 77.2% (n=10), while in the second, MA and MS were differentiated individually from the NC state with average accuracies of 71.2% and 62.7%, respectively (n=7). In the third study, an average accuracy of 62.5% was obtained for the MA vs. MS vs. NC problem (n=4). The fourth study demonstrated that the ability to classify mental states (specifically MA vs. NC) remains consistent across multiple sessions (p=0.67), but that there is intersession variability in the spatiotemporal characteristics that best discriminate the states. In the final study, a two-session average accuracy of 71.1% was achieved in the MA vs. NC classification problem for the participant with Duchenne muscular dystrophy.
|
102 |
Hybrid Organic/Inorganic Optical Upconversion DevicesChen, Jun 13 December 2011 (has links)
The widely available charge coupled device (CCD) and lately CMOS imaging devices have created many applications on a mass scale. However these devices are limited to wavelengths shorter than about 1 μm. Hybrid photon upconversion devices have been developed recently. The end goal is to achieve an alternative technology for imaging in the 1.5-μm region. The hybrid upconversion idea relies on the integration of a photodetector and an organic light emitting diode (OLED). Under a forward bias for the OLED, the detected signal in the Photodetector is sent to the OLED, resulting in an increase in emission at a shorter wavelength and therefore achieving optical up conversion. An OLED device can simply consists of a stack of anode, a hole transport layer (HTL), a light-emitting layer, an electron transport layer (ETL), a cathode layer, and it typically emits visible light. As each organic molecule is a topologically perfect structure, the growth of each organic layer does not require “lattice matching”, which has been the fundamental limit for inorganic semiconductor monolithic devices. Thus, integration of an OLED with a III–V compound semiconductor is a highly feasible and desirable approach for making low-cost, large-area, potentially high efficiency devices. This thesis addresses the physics, fabrication and characterization of hybrid near infrared optical upconverters and their imaging application.
Firstly, one novel hybrid optical upconverter structure is presented, which substantially improves the upconversion efficiency by embedding a metal mirror. Efficient carrier injection from the inorganic photodetector to the OLED is achieved by the insertion of a thin Au metal embedded mirror at the inorganic-organic interface. The upconversion efficiency was improved by more than 100%.
Secondly, the overall upconversion efficiency can be increased significantly, by introducing a gain mechanism into the Photodetector section of the upconverter. A promising option to implement gain is a heterojunction phototransistor (HPT). An InGaAs-InP HPT was integrated with an OLED, which converts 1.5-μm Infrared light to visible light with a built-in electrical gain (~94). The overall upconversion efficiency was improved to be 1.55 W/W.
Thirdly, this upconversion approach can also be used to realize a pixelless imaging device. A pixelless hybrid upconversion device consists of a large-area single-mesa device, where the OLED output is spatially correlated with the input 1.5-µm scene. Only the parts receiving incoming photons will emit output photons. To achieve this functionality, photon-generated carriers must flow mainly along the layer-growth direction when injected from the InGaAs light absorption layer into OLED light emission layer. A prototype of pixelless imaging device based on an i-In0.53Ga0.47As/C60 heterojunction was demonstrated, which minimized lateral current spreading.
This thesis presents experimental results of the first organic/inorganic hybrid optical amplifer and the first hybrid near infrared imaging device.
|
103 |
Asssessment of Tissue Viability in Acute Thermal Injuries Using Near Infrared Point SpectroscopyCross, Karen Michelle 06 August 2010 (has links)
Introduction: Currently, there are no objective techniques to assess burn depth. An early assessment of burn depth would enable accurate management decisions, which would improve patient outcomes. Near infrared (NIR) technology has shown promise as a non-invasive monitor of oxygenation and perfusion, and its potential to assess the depth of burn injuries has been investigated clinically over the past five years. The purpose of the thesis was to determine the capacity of NIR technology to differentiate acute thermal injuries.
Methods: Burn sites (n=5) and control sites (n=5) were created on the dorsum of sixteen animals with brass rods held at constant pressure and heated to 100°C and 37.5°C respectively. NIR data was collected from the burns and control sites pre-burn, immediately post-burn, and 1, 12, 24, 36, 48 and 96 hours after the burn injury. Biopsies of the burn and control sites were acquired at each time point and used to confirm the depth of injury. NIR data was processed for the content of water, oxy-, deoxy- and methemoglobin.
Results: Oxyhemoglobin and total hemoglobin decreased as burn depth increased. The proportion of oxy- and deoxyhemoglobin to total hemoglobin showed that the ratio of oxy- to deoxyhemoglobin decreased as burn injury increased. Methemoglobin levels as a ratio of total hemoglobin also showed that as the severity of injury increased the proportion of methemoglobin also increased. Finally, superficial partial thickness injuries (3 s and 12 s) showed early peak levels of water, which rapidly declined towards baseline. The deep partial thickness injuries (20 s and 30 s) do not experience peak levels and retain water over the course of the experiment. The full thickness injuries water levels remain close or below baseline levels throughout the experiment.
Conclusion: NIR spectroscopy could distinguish burn depth using water, oxy-, met- and total hemoglobin as separate entities. The presence of methemoglobin in the burn wounds is a novel finding that has not been described previously in burn literature.
|
104 |
The evaluation of wort by near infrared spectroscopy /Taylor, Helen Ruth. January 2001 (has links)
Thesis (M.Sc. (Hons.)) -- University of Western Sydney, 2001. / "A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Honours), University of Western Sydney, Hawkesbury" Bibliography : leaves 60-66.
|
105 |
Path-length determination of photons in mid-infrared diffuse reflection spectroscopy /Averett, Lacey A. January 1900 (has links)
Thesis (Ph. D., Chemistry)--University of Idaho, December 2006. / Major professor: Peter R. Griffiths. Includes bibliographical references. Also available online (PDF file) by subscription or by purchasing the individual file.
|
106 |
Evaluation of a prototype NIR system for Douglas-fir wood density estimation /Belart Lengerich, Maria Francisca. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 58-62). Also available on the World Wide Web.
|
107 |
Visible and near infrared reflectance spectroscopy of irregular solids /Balkenhol, Michelle Rose, January 1992 (has links)
Thesis (Ph. D.)--University of Washington, 1992. / Vita. Includes bibliographical references (leaves [247]-251).
|
108 |
Application of near infrared spectroscopy to pulp yield and kappa number estimationLightle, Roy William, Krishnagopalan, Gopal A. January 2006 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2006. / Abstract. Vita. Includes bibliographic references (p.93-94).
|
109 |
Robust spectroscopic quantification in turbid mediaEsmonde-White, Francis W. L. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Chemistry. Title from title page of PDF (viewed 2009/06/08). Includes bibliographical references.
|
110 |
In vitro simulation experiments for the implementation of a nocturnal hypoglycemic alarm based on near-infrared spectroscopy /Medford, Cynthia D. January 2004 (has links)
Thesis (M.S.)--Ohio University, November, 2004. / Includes bibliographical references (p. 115-117)
|
Page generated in 0.0693 seconds