• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes

Fang, Qiang, Li, Jinhui, Shi, Wei, Qin, Yuguo, Xu, Yang, Meng, Xiangjie, Norwood, Robert A., Peyghambarian, Nasser 10 1900 (has links)
Tandem pumping technique are traditionally adopted to develop > 3-kW continuous-wave (cw) Yb3+-doped fiber lasers, which are usually pumped by other fiber lasers at shorter wavelengths (1018 nm e.g.). Fiber lasers directly pumped by laser diodes have higher wall-plug efficiency and are more compact. Here we report two high brightness monolithic cw fiber laser sources at 1080 nm. Both lasers consist of a cw fiber laser oscillator and one laser-diode pumped double cladding fiber amplifier in the master oscillator-power amplifier configuration. One laser, using 30-mu m-core Yb3+-doped fiber as the gain medium, can produce > 5-kW average laser power with near diffraction-limited beam quality (M-2<1.8). The slope efficiency of the fiber amplifier with respect to the launched pump power reached 86.5%. The other laser utilized 50-mu m-core Yb3+-doped fiber as the gain medium and produced > 8-kW average laser power with high beam quality (M-2: similar to 4). The slope efficiency of the fiber amplifier with respect to the launched pump power reach 83%. To the best of our knowledge, this is the first detailed report for > 5-kW near-diffraction-limited and > 8-kW high-brightness monolithic fiber lasers directly pumped by laser diodes.

Page generated in 0.0726 seconds