• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Impact of Near-Duplicate Documents on Information Retrieval Evaluation

Khoshdel Nikkhoo, Hani 18 January 2011 (has links)
Near-duplicate documents can adversely affect the efficiency and effectiveness of search engines. Due to the pairwise nature of the comparisons required for near-duplicate detection, this process is extremely costly in terms of the time and processing power it requires. Despite the ubiquitous presence of near-duplicate detection algorithms in commercial search engines, their application and impact in research environments is not fully explored. The implementation of near-duplicate detection algorithms forces trade-offs between efficiency and effectiveness, entailing careful testing and measurement to ensure acceptable performance. In this thesis, we describe and evaluate a scalable implementation of a near-duplicate detection algorithm, based on standard shingling techniques, running under a MapReduce framework. We explore two different shingle sampling techniques and analyze their impact on the near-duplicate document detection process. In addition, we investigate the prevalence of near-duplicate documents in the runs submitted to the adhoc task of TREC 2009 web track.
2

The Impact of Near-Duplicate Documents on Information Retrieval Evaluation

Khoshdel Nikkhoo, Hani 18 January 2011 (has links)
Near-duplicate documents can adversely affect the efficiency and effectiveness of search engines. Due to the pairwise nature of the comparisons required for near-duplicate detection, this process is extremely costly in terms of the time and processing power it requires. Despite the ubiquitous presence of near-duplicate detection algorithms in commercial search engines, their application and impact in research environments is not fully explored. The implementation of near-duplicate detection algorithms forces trade-offs between efficiency and effectiveness, entailing careful testing and measurement to ensure acceptable performance. In this thesis, we describe and evaluate a scalable implementation of a near-duplicate detection algorithm, based on standard shingling techniques, running under a MapReduce framework. We explore two different shingle sampling techniques and analyze their impact on the near-duplicate document detection process. In addition, we investigate the prevalence of near-duplicate documents in the runs submitted to the adhoc task of TREC 2009 web track.
3

Near-Duplicate Detection Using Instance Level Constraints

Patel, Vishal 08 1900 (has links) (PDF)
For the task of near-duplicate document detection, comparison approaches based on bag-of-words used in information retrieval community are not sufficiently accurate. This work presents novel approach when instance-level constraints are given for documents and it is needed to retrieve them, given new query document for near-duplicate detection. The framework incorporates instance-level constraints and clusters documents into groups using novel clustering approach Grouped Latent Dirichlet Allocation (gLDA). Then distance metric is learned for each cluster using large margin nearest neighbor algorithm and finally ranked documents for given new unknown document using learnt distance metrics. The variety of experimental results on various datasets demonstrate that our clustering method (gLDA with side constraints) performs better than other clustering methods and the overall approach outperforms other near-duplicate detection algorithms.

Page generated in 0.1079 seconds