• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reproductive biology and nectary structure of <i>Lythrum</i> in central Saskatchewan

Caswell, Wade Devin 26 August 2008
This project examined multiple aspects of the reproductive biology of the wetland invasive species, purple loosestrife (<i>Lythrum salicaria</i> L.), in central Saskatchewan. An examination of insect taxa visiting the three floral morphs of <i>Tristylous</i> L. <i>salicaria</i>, as well as a ranking of the pollination efficiency of individual insect species, an apparent first for L salicaria, was undertaken. Surface features of the floral nectary of L. <i>salicaria</i>, as well as floral nectar secretion dynamics, were also investigated. This project also re-visited some of the previous work done on this invasive species, including various floral organ morphometrics in relation to heterostyly, and aspects of the tristylous breeding system including self-fertilization, and fertilization potential of both illegitimate pollination and legitimate pollination.<p>The trimorphic nature of the sexual floral organs of L. <i>salicaria</i> were well defined in Saskatchewan. Significant differences in length (long-, intermediate- and short-style lengths) exist between all three floral morphs. Lengths of the staminal filaments (long, intermediate, and short) were also significantly different. Also the floral nectary in L. <i>salicaria</i> is located in a depression formed at the interface of the hypanthium and the gynoecium. Several stomata are located at regular intervals along the nectary surface, and may constitute the escape route for floral nectar. No morphological differences in nectary structure were apparent among the three floral morphs.<p>Nectar secretion dynamics of L. <i>salicaria</i> were examined between the three floral morphs throughout two summer days in 2006. Peak average nectar volumes and nectar sugar quantities were detected at 3:00 pm, and, interestingly, no significant differences were detected between floral morphs, in accordance with nectary morphology. The estimated secretion rates for L. <i>salicaria</i> ranged from 61 83 µg of nectar sugar per flower per hour.<p>Hand-pollination experiments carried out over the summers of 2006 and 2007 at three field sites in and around Saskatoon have verified the strong self-incompatibility in the breeding system of this tristylous species. Intramorph pollination, using illegitimate pollen, did not result in fertilisation, whereas legitimate hand-pollination experiments yielded multiple pollen tubes at the style base, without exception.<p><i>Lythrum salicaria</i> in central Saskatchewan was visited by several bee taxa including honeybees (<i>Apis mellifera</i> L.), bumblebees (Bombus spp.), leafcutter bees (Megachile spp.), and sweat bees (Lasioglossum spp.). A single visit by <i>Anthophora furcata</i> (Panzer) was also recorded in 2007. Generally, bee visits led to high levels of pollination success as determined by fluorescence microscopy of pollen tubes following single insect visits to previously-unvisited flowers. However, most visits by hoverflies (Syrphidae) were non-pollinating. Visits by Pieris rapae (L.), yellowjacket wasps (Vespidae) and some non-syrphid flies (Diptera) also yielded no pollen tubes at the style base.<p>A study of the ultrastructure and development of the floral nectary of the purple loosestrife cultivar Morden Gleam (<i>Lythrum virgatum</i> L. x L. alatum Pursh.) showed that starch build up in pre-secretory nectary tissues declined throughout secretion, and is virtually absent in post-secretory nectary tissues. The lack of a direct vascular supply to the floral nectary suggests that the starch breakdown products likely make up most of the floral nectar carbohydrates. Surface features of the floral nectary in Morden Gleam closely resembled those of L. salicaria, located in the valley formed between the hypanthium and gynoecium. Nectary stomata, occasionally in pairs, likely serve as outlets for nectar in this cultivar.
2

Reproductive biology and nectary structure of <i>Lythrum</i> in central Saskatchewan

Caswell, Wade Devin 26 August 2008 (has links)
This project examined multiple aspects of the reproductive biology of the wetland invasive species, purple loosestrife (<i>Lythrum salicaria</i> L.), in central Saskatchewan. An examination of insect taxa visiting the three floral morphs of <i>Tristylous</i> L. <i>salicaria</i>, as well as a ranking of the pollination efficiency of individual insect species, an apparent first for L salicaria, was undertaken. Surface features of the floral nectary of L. <i>salicaria</i>, as well as floral nectar secretion dynamics, were also investigated. This project also re-visited some of the previous work done on this invasive species, including various floral organ morphometrics in relation to heterostyly, and aspects of the tristylous breeding system including self-fertilization, and fertilization potential of both illegitimate pollination and legitimate pollination.<p>The trimorphic nature of the sexual floral organs of L. <i>salicaria</i> were well defined in Saskatchewan. Significant differences in length (long-, intermediate- and short-style lengths) exist between all three floral morphs. Lengths of the staminal filaments (long, intermediate, and short) were also significantly different. Also the floral nectary in L. <i>salicaria</i> is located in a depression formed at the interface of the hypanthium and the gynoecium. Several stomata are located at regular intervals along the nectary surface, and may constitute the escape route for floral nectar. No morphological differences in nectary structure were apparent among the three floral morphs.<p>Nectar secretion dynamics of L. <i>salicaria</i> were examined between the three floral morphs throughout two summer days in 2006. Peak average nectar volumes and nectar sugar quantities were detected at 3:00 pm, and, interestingly, no significant differences were detected between floral morphs, in accordance with nectary morphology. The estimated secretion rates for L. <i>salicaria</i> ranged from 61 83 µg of nectar sugar per flower per hour.<p>Hand-pollination experiments carried out over the summers of 2006 and 2007 at three field sites in and around Saskatoon have verified the strong self-incompatibility in the breeding system of this tristylous species. Intramorph pollination, using illegitimate pollen, did not result in fertilisation, whereas legitimate hand-pollination experiments yielded multiple pollen tubes at the style base, without exception.<p><i>Lythrum salicaria</i> in central Saskatchewan was visited by several bee taxa including honeybees (<i>Apis mellifera</i> L.), bumblebees (Bombus spp.), leafcutter bees (Megachile spp.), and sweat bees (Lasioglossum spp.). A single visit by <i>Anthophora furcata</i> (Panzer) was also recorded in 2007. Generally, bee visits led to high levels of pollination success as determined by fluorescence microscopy of pollen tubes following single insect visits to previously-unvisited flowers. However, most visits by hoverflies (Syrphidae) were non-pollinating. Visits by Pieris rapae (L.), yellowjacket wasps (Vespidae) and some non-syrphid flies (Diptera) also yielded no pollen tubes at the style base.<p>A study of the ultrastructure and development of the floral nectary of the purple loosestrife cultivar Morden Gleam (<i>Lythrum virgatum</i> L. x L. alatum Pursh.) showed that starch build up in pre-secretory nectary tissues declined throughout secretion, and is virtually absent in post-secretory nectary tissues. The lack of a direct vascular supply to the floral nectary suggests that the starch breakdown products likely make up most of the floral nectar carbohydrates. Surface features of the floral nectary in Morden Gleam closely resembled those of L. salicaria, located in the valley formed between the hypanthium and gynoecium. Nectary stomata, occasionally in pairs, likely serve as outlets for nectar in this cultivar.
3

Pollination biology of <i>Echinacea angustifolia</i> and <i>E. purpurea</i> (<i>Asteraceae</i>) in Saskatchewan

Wist, Tyler Jonathan 28 October 2005
The goals of this research project were to identify the various insects observed to visit inflorescences of Echinacea angustifolia DC, and to rank these visitors according to their importance as pollinators of E. angustifolia in Saskatchewan. Studying nectar and the nectary is essential to understanding the interaction of disc florets with pollinators. Nectar-sugar production by disc florets of E. angustifolia and E. purpurea (L. Moench) was quantified from anthesis to cessation with production per disc floret peaking in the afternoon of the staminate phase (191.7 µg) and at midday of the first day of the pistillate phase (156.6 µg), respectively. Morphology of the disc-like floral nectaries of both Echinacea species was studied, as well as the ultrastructure of the nectary of E. purpurea. Modified stomata on the nectary rim are the most likely exits for nectar, but creases in the epidermis may also participate. The nectary of E. purpurea is vascularized by phloem alone, which occurred adjacent to the epidermis. Companion cells possessed wall ingrowths, and these cells may unload arriving sugar destined for either an apoplastic or symplastic pathway. Lobed nuclei were a key feature of secretory parenchyma cells, as was a predominance of mitochondria, suggesting that energy-requiring eccrine secretion predominates in E. purpurea. E. angustifolia exhibited a generalist pollination system, with pollinating insects belonging to the orders Coleoptera, Diptera, Hymenoptera, and Lepidoptera. The pollination efficiency of visitors was determined by single insect visits to bagged, virgin inflorescences followed by quantifying pollen tubes at the bases of receptive styles and/or calculating the percentage of shrivelled styles. It was determined that bumble bees (Bombus spp.) were efficient pollinators, indicating that they would likely contribute much to the pollination of E. angustifolia. Grasshopper bee flies (Systoechus vulgaris Loew) were plentiful but individually were not efficient pollinators, but taken together, they provided much pollination. Golden blister beetles (Epicauta ferruginea Say) were efficient pollinators but where yellow-petalled flowers occurred, their numbers on E. angustifolia decreased. Honey bees (Apis mellifera L.) were efficient pollinators and were present in low numbers without managed introduction. Pierid (2003) butterflies were regular visitors and efficient pollinators, and likely contributed significantly to E. angustifolia pollination. When introduced, the alfalfa leafcutter bee (Megachile rotundata Fabr.) preferred not to forage on E. angustifolia and as such, these solitary bees were not suitable as managed pollinators. In large agricultural plantings of E. angustifolia, however, native insects may not be capable of providing sufficient pollination for seed production when floral competition occurs.
4

Pollination biology of <i>Echinacea angustifolia</i> and <i>E. purpurea</i> (<i>Asteraceae</i>) in Saskatchewan

Wist, Tyler Jonathan 28 October 2005 (has links)
The goals of this research project were to identify the various insects observed to visit inflorescences of Echinacea angustifolia DC, and to rank these visitors according to their importance as pollinators of E. angustifolia in Saskatchewan. Studying nectar and the nectary is essential to understanding the interaction of disc florets with pollinators. Nectar-sugar production by disc florets of E. angustifolia and E. purpurea (L. Moench) was quantified from anthesis to cessation with production per disc floret peaking in the afternoon of the staminate phase (191.7 µg) and at midday of the first day of the pistillate phase (156.6 µg), respectively. Morphology of the disc-like floral nectaries of both Echinacea species was studied, as well as the ultrastructure of the nectary of E. purpurea. Modified stomata on the nectary rim are the most likely exits for nectar, but creases in the epidermis may also participate. The nectary of E. purpurea is vascularized by phloem alone, which occurred adjacent to the epidermis. Companion cells possessed wall ingrowths, and these cells may unload arriving sugar destined for either an apoplastic or symplastic pathway. Lobed nuclei were a key feature of secretory parenchyma cells, as was a predominance of mitochondria, suggesting that energy-requiring eccrine secretion predominates in E. purpurea. E. angustifolia exhibited a generalist pollination system, with pollinating insects belonging to the orders Coleoptera, Diptera, Hymenoptera, and Lepidoptera. The pollination efficiency of visitors was determined by single insect visits to bagged, virgin inflorescences followed by quantifying pollen tubes at the bases of receptive styles and/or calculating the percentage of shrivelled styles. It was determined that bumble bees (Bombus spp.) were efficient pollinators, indicating that they would likely contribute much to the pollination of E. angustifolia. Grasshopper bee flies (Systoechus vulgaris Loew) were plentiful but individually were not efficient pollinators, but taken together, they provided much pollination. Golden blister beetles (Epicauta ferruginea Say) were efficient pollinators but where yellow-petalled flowers occurred, their numbers on E. angustifolia decreased. Honey bees (Apis mellifera L.) were efficient pollinators and were present in low numbers without managed introduction. Pierid (2003) butterflies were regular visitors and efficient pollinators, and likely contributed significantly to E. angustifolia pollination. When introduced, the alfalfa leafcutter bee (Megachile rotundata Fabr.) preferred not to forage on E. angustifolia and as such, these solitary bees were not suitable as managed pollinators. In large agricultural plantings of E. angustifolia, however, native insects may not be capable of providing sufficient pollination for seed production when floral competition occurs.
5

Development, growth and ultrastructure of the floral nectar spur of Centranthus ruber (L.) DC (Valerianaceae)

2013 July 1900 (has links)
The main objective of this research project was to study the growth and development of the floral nectar spur of Centranthus ruber (L.) DC. Nectar spurs are tubular floral outgrowths, generally derived from the perianth organs, which typically contain secreted floral nectar. The morphological characteristics of the spur, particularly the length, determine which floral visitors will be able to access the nectar reward pooled at the spur tip. Therefore, nectar spurs are ecologically important for the development of specialised pollinator interactions and have been demonstrated to act as key innovations in the evolution of some taxa. Morphological and anatomical characteristics of the spur and floral nectary were investigated using light and scanning electron microscopy. Ultrastructural features of the nectar spur, particularly the floral nectary within, were assessed using transmission electron microscopy. Nectar in C. ruber is produced by a trichomatous nectary which runs along the entire, inner abaxial surface of the spur. The nectary is aligned with the single vascular bundle which runs along the abaxial side of the spur, through the sub-nectary parenchyma, and back up the adaxial side. The secretory trichomes are unicellular and, in late development, they develop a thick layer of secondary wall ingrowths which vastly increases the surface area of the plasma membrane for nectar secretion. Elongate, non-secretory trichomes occupy the entire remaining circumference of the spur’s inner epidermis, but their density is reduced compared to the secretory trichomes. The cellular basis for spur growth is poorly characterized in the literature. Until recently, it was assumed that all nectar spurs grow by the constant production of new cells via up to three potential meristematic regions (the meristem hypothesis, Tepfer 1953). The cellular basis for spur growth in C. ruber was investigated by cell file counts and cell length and width measurements along the lateral side of nectar spurs in each of the developmental stages. DAPI stained spurs were also examined with Confocal/Apotome microscopy to determine the timing and position of cell division activity throughout spur development. It was determined that elongation of the spur epidermal cells contributes much more to spur growth than cell division. In early development, division is the primary driver of spur growth and the cells are isotropic. However, as development progresses, cell division activity slows down and the spur cells become increasingly anisotropic until anthesis. The patterns of nectar secretion were determined by assessing the volume, solute concentration and carbohydrate composition of the nectar throughout flowering phenology in two C. ruber plants. Nectar volumes and solute amounts rose initially, followed by an eventual decline in both as phenology progressed towards senescence. Because this study was conducted on greenhouse grown plants, it can be assumed that nectar was not removed by insects, suggesting that it is likely reabsorbed following secretion. High performance liquid chromatography (HPLC) analysis determined that C. ruber's nectar is sucrose dominant and that nectar composition remains stable following anthesis throughout floral phenology.

Page generated in 0.0794 seconds