• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pathogenesis of HIV-1 nef in adult mice

Rahim, Mir Munir Ahmed, 1975- January 2008 (has links)
Development of a suitable animal model of AIDS is much needed in AIDS research to study infection and pathogenesis as well as to evaluate methods of prevention and treatment of HIV infection. Small animals such as rodents are attractive candidates for AIDS research due to the availability of various inbred and genetically engineered strains, extensive knowledge or their immune system, especially in mice, and the relative ease of breeding and maintaining animal colonies. Transgenic small animal models carrying entire HIV genome or selected genes have been instrumental to understand functions of HIV genes in vivo and their role in HIV pathogenesis. The type of cells in which HIV genes are expressed seems to be an import prerequisite for the study of HIV gene functions in transgenic mice. Mice constitutively expressing the entire HIV-1 genome or HIV-1 nef gene in CD4 + T cells and in the cells of macrophage/dendritic lineage develop an AIDS-like disease very similar to AIDS disease in humans. Similarly, expression of Nef in adult mice, using inducible system, results in the AIDS-like disease. This disease is characterized by thymic atrophy, impaired thymocyte maturation, loss of CD4+ T cells, increased activation and turnover of T cells, which can occur in the absence of lymphypenia, and non-lymphoid organ disease involving the lungs and kidneys. Susceptibility of adult mice to the pathological effects of Nef suggests that the AIDS-like disease in the constitutively expressing Nef Tg mice is not due to developmental defects caused by early expression of Nef. This model highlights the important role of Nef in HIV-1 pathogenesis. The high similarity in the disease in these Tg mice with human AIDS strongly suggest that these mice are a relevant model to study AIDS. This study further evidence that mouse cells can support functions of Nef and these Tg mice represent a unique model to study Nef functions in vivo in the context of the primary immune system. Moreover, the inducible Nef Tg model has given us the ability to control the level and time of expression of Nef which was impossible to do in the previously reported constitutive Nef Tg mouse models. These mice will be useful to study immune reconstitution since Nef expression can be turned off after withdrawal from dox.
2

Pathogenesis of HIV-1 nef in adult mice

Rahim, Mir Munir Ahmed, 1975- January 2008 (has links)
No description available.
3

A Novel Motif in HIV-1 Nef that Regulates MIP-1β Chemokine Release in Macrophages: A Dissertation

Dai, Lue 17 June 2010 (has links)
Nef is an accessory protein encoded by human and simian immunodeficiency viruses (HIV and SIV), and is critical for viral pathogenicity in vivo.The structure of Nef has been resolved and the major cellular activities of Nef are generally described as down-regulation of cell surface molecules, enhancement of virus infectivity and regulation of cell signaling and activation. Macrophages represent a key target of HIV-1 infection and may contribute significantly to viral pathogenesis by facilitating viral propagation, maintaining a viral reservoir and regulating viral replication. During HIV-1 infection, various cytokines and chemokines are induced for viral advantages more than for host defense. We have previously demonstrated that HIV-1 Nef regulates the release of chemokines, MIP-1α and MIP-1ß, from infected macrophages and have proposed that this may enhance conditions for viral replication by promoting recruitment of substrate lymphocytes to sites of infection (1). However, the molecular basis for this Nef activity remains to be defined. The main goals of this thesis are to identify the functional motif in Nef that is responsible for chemokine induction in macrophages and to elucidate the relevance of this motif to other Nef functions. Using a mutagenesis approach, we have eventually identified a novel motif (KEK) that regulates chemokine production in infected macrophages after we excluded several previously described Nef motifs. This motif is conserved in both HIV-1 and SIV Nef proteins. Mutations in this domain abrogated MIP-1ß induction as well as the Nef-dependent release of other secretory factors by macrophages. However, disruption of this motif did not affect other Nef-ascribed activities such as CD4 and MHC-I down-regulation. In addition, we have determined the involvement of viral Env proteins in Nef-induced chemokine production. Distinct signaling pathways that regulate chemokine release in macrophage will also be described. Finally, several possible roles of the KEK motif are proposed and some preliminary results of co-immunoprecipitation experiments will be presented which aim to characterize cellular proteins involved in chemokine regulation by Nef. Collectively, our studies reveal a specific determinant within Nef that is critical for chemokine release by Nef. Identification of this motif paves the way for future studies to explore the molecular machanisms of Nef-regulated cell signaling pathways. Such knowledge may point to new therapeutic strategies that interrupt Nef function and limit the course of HIV-1 infection.
4

Investigating the Roles of NEDD4.2s and Nef in the Release and Replication of HIV-1: A Dissertation

Weiss, Eric R. 13 September 2012 (has links)
Replication of HIV-1 requires the assembly and release of mature and infectious viral particles. In order to accomplish this goal, HIV-1 has evolved multiple methods to interact with the host cell. HIV-1 recruits the host cell ESCRT machinery to facilitate the release of nascent viral particles from the host cell membrane. Recruitment of these cellular factors is dependent on the presence of short motifs in Gag referred to as Late-domains. Deletion or mutation of these domains results in substantial decrease in the release of infectious virions. However, previously published work has indicated that over-expression of the E3 ubiquitin ligase, NEDD4.2s is able to robustly rescue release of otherwise budding-defective HIV-1 particles. This rescue is specific to the NEDD4.2s isoform as related E3 ubiquitin ligases display no ability to rescue particle release. In addition, rescue of particle release is dependent on the presence of the partial C2 domain and a catalytically active HECT domain of NEDD4.2s. Here I provide evidence supporting the hypothesis that a partial C2 domain of NEDD4.2s constitutes a Gag interacting module capable of targeting the HECT domains of other E3 ubiquitin ligases to HIV-1 Gag. Also, by generating chimeras between HECT domains shown to form poly-ubiquitin chains linked through either K48 or K63 of ubiquitin, I demonstrate that the ability of NEDD4.2s to catalyze the formation of K63-polyubiquitin chains is required for its stimulation of HIV-1 L-domain mutant particle release. In addition, I present findings from on-going research into the role of the HIV-1 accessory protein Nef during viral replication using the culture T-cell line, MOLT3. My current findings indicate that downregulation of CD4 from the host cell membrane does not solely account for the dramatic dependence of HIV-1 replication on Nef expression in this system. In addition, I present evidence indicating that Nef proteins from diverse HIV-1 Groups and strains are capable of enhancing HIV-1 replication in this system. Analysis of a range of mutations in Nef known to impact interaction with cellular proteins suggest that the observed replication enhancement requires Nef targeting to the host cell membrane and may also require the ability to interact with select Src-kinases. Lastly, we find that the ability of Nef to enhance replication in this system is separate from any increase in viral particle infectivity, in agreement with current literature.

Page generated in 0.0588 seconds