• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 13
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 66
  • 29
  • 21
  • 20
  • 18
  • 16
  • 13
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fuzzy logic and neural network techniques in data analysis

Campbell, Jonathan G. January 1999 (has links)
No description available.
2

Solving of Travelling Salesman Problem for large number of cities in environment with constraints

Stanec, Roman January 2011 (has links)
No description available.
3

FPGA implementation of ROI extraction for visual-IR smart cameras

Zandi Zand, Sajjad January 2015 (has links)
Video surveillance systems have been popular as a security tool for years, and the technological development helps monitoring accident-prone areas with the help of digital image processing.A thermal and a visual camera are being used in the surveillance project. The thermal camera is sensitive to the heat emitted by objects, and it is essential to employ the thermal camera as the visual camera is only useful in the presence of light. These cameras do not provide images of the same resolution. In order to extract the region of interest (ROI) of the visual camera, the images of these cameras need to have the same resolution; therefore the thermal images are processed in order to have the same size as the visual image.The ROI extraction is needed in order to reduce the data that needs to be transmitted. The region of interest is extracted from the visual image and the required processes are mostly done on the thermal image as it has lower resolution and therefore requires less computational processing. The image taken from the thermal camera is up scaled by using the nearest neighbor algorithm and it is zero-padded to make the resolutions of the two images equal, and then the region of interest is extracted by masking the result with the related converted version of visual image to YCbCr color space.
4

Dimensionality reduction and representation for nearest neighbour learning

Payne, Terry R. January 1999 (has links)
An increasing number of intelligent information agents employ Nearest Neighbour learning algorithms to provide personalised assistance to the user. This assistance may be in the form of recognising or locating documents that the user might find relevant or interesting. To achieve this, documents must be mapped into a representation that can be presented to the learning algorithm. Simple heuristic techniques are generally used to identify relevant terms from the documents. These terms are then used to construct large, sparse training vectors. The work presented here investigates an alternative representation based on sets of terms, called set-valued attributes, and proposes a new family of Nearest Neighbour learning algorithms that utilise this set-based representation. The importance of discarding irrelevant terms from the documents is then addressed, and this is generalised to examine the behaviour of the Nearest Neighbour learning algorithm with high dimensional data sets containing such values. A variety of selection techniques used by other machine learning and information retrieval systems are presented, and empirically evaluated within the context of a Nearest Neighbour framework. The thesis concludes with a discussion of ways in which attribute selection and dimensionality reduction techniques may be used to improve the selection of relevant attributes, and thus increase the reliability and predictive accuracy of the Nearest Neighbour learning algorithm.
5

Právní postavení sousedů v procesech podle stavebního zákona / Legal status of neighbours in the procedures under the Building Act

Šanovec, Přemysl January 2016 (has links)
The main aim of the thesis is to provide explanation of the legal status of the neighbours in the procedures under the Building Act while working with the contemporary literature and the established practice of the courts. The first part of the thesis is devoted to a description of basic concepts. The first chapter explains the concept of structure and plot. The second chapter is describing the concept of neighbour and the evolution of the concept in detail to provide the best means of understanding the possible problems of the concept's interpretations. The final chapter of the first part explores the means of neighbour's defence against interferences of his rights connected with his real estate with special attention to the essentials of objections, as these are the main mean of said defence, while the factual content of the objections is explained in later chapters within the boundaries of individual procedures. The second part is divided into four chapters each dedicated to a certain field of procedures under the Building Act while focusing the neighbour's point of view. The first chapter describes the application for a planning permission procedure and its alternatives: the public law contract, the simplified procedure and the planning consent. The second chapter follows on with the building...
6

The natural neighbour radial point interpolation method : solid mechanics and mechanobiology applications

Belinha, Jorge Américo Oliveira Pinto January 2010 (has links)
Tese de doutoramento. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 2010
7

Integrated feature, neighbourhood, and model optimization for personalised modelling and knowledge discovery

Liang, Wen January 2009 (has links)
“Machine learning is the process of discovering and interpreting meaningful information, such as new correlations, patterns and trends by sifting through large amounts of data stored in repositories, using pattern recognition technologies as well as statistical and mathematical techniques” (Larose, 2005). From my understanding, machine learning is a process of using different analysis techniques to observe previously unknown, potentially meaningful information, and discover strong patterns and relationships from a large dataset. Professor Kasabov (2007b) classified computational models into three categories (e.g. global, local, and personalised) which have been widespread and used in the areas of data analysis and decision support in general, and in the areas of medicine and bioinformatics in particular. Most recently, the concept of personalised modelling has been widely applied to various disciplines such as personalised medicine, personalised drug design for known diseases (e.g. cancer, diabetes, brain disease, etc.) as well as for other modelling problems in ecology, business, finance, crime prevention, and so on. The philosophy behind the personalised modelling approach is that every person is different from others, thus he/she will benefit from having a personalised model and treatment. However, personalised modelling is not without issues, such as defining the correct number of neighbours or defining an appropriate number of features. As a result, the principal goal of this research is to study and address these issues and to create a novel framework and system for personalised modelling. The framework would allow users to select and optimise the most important features and nearest neighbours for a new input sample in relation to a certain problem based on a weighted variable distance measure in order to obtain more precise prognostic accuracy and personalised knowledge, when compared with global modelling and local modelling approaches.
8

Location Sensing Using Bluetooth for GPS Suppression

Mair, Nicholas 06 September 2012 (has links)
With the ubiquity of mobile devices, there has been increased interest in determining how they can be used with location-based services. These types of services work best when the device has the ability to sense its location frequently, while still maintaining enough battery life to carry out its normal daily functions. Since the life of the battery on a mobile device is already so limited, ways of preserving that energy has become an important issue. The goal of this thesis is to demonstrate that Bluetooth can assist in providing energy efficient mobile device localization. This goal is achieved through a proposed Bluetooth Location Service Discovery framework which provides an API that can be incorporated into third party applications. The API allows BlackBerry devices to use surrounding Bluetooth devices in order to make a prediction about its current location. Predictions are completed with the assistance of the K-Nearest Neighbour data mining algorithm, and can be used as an alternative to invoking the GPS. The results obtained through experiments demonstrate that the results are comparable to those obtained with GPS.
9

Integrated feature, neighbourhood, and model optimization for personalised modelling and knowledge discovery

Liang, Wen January 2009 (has links)
“Machine learning is the process of discovering and interpreting meaningful information, such as new correlations, patterns and trends by sifting through large amounts of data stored in repositories, using pattern recognition technologies as well as statistical and mathematical techniques” (Larose, 2005). From my understanding, machine learning is a process of using different analysis techniques to observe previously unknown, potentially meaningful information, and discover strong patterns and relationships from a large dataset. Professor Kasabov (2007b) classified computational models into three categories (e.g. global, local, and personalised) which have been widespread and used in the areas of data analysis and decision support in general, and in the areas of medicine and bioinformatics in particular. Most recently, the concept of personalised modelling has been widely applied to various disciplines such as personalised medicine, personalised drug design for known diseases (e.g. cancer, diabetes, brain disease, etc.) as well as for other modelling problems in ecology, business, finance, crime prevention, and so on. The philosophy behind the personalised modelling approach is that every person is different from others, thus he/she will benefit from having a personalised model and treatment. However, personalised modelling is not without issues, such as defining the correct number of neighbours or defining an appropriate number of features. As a result, the principal goal of this research is to study and address these issues and to create a novel framework and system for personalised modelling. The framework would allow users to select and optimise the most important features and nearest neighbours for a new input sample in relation to a certain problem based on a weighted variable distance measure in order to obtain more precise prognostic accuracy and personalised knowledge, when compared with global modelling and local modelling approaches.
10

Integrated feature, neighbourhood, and model optimization for personalised modelling and knowledge discovery

Liang, Wen January 2009 (has links)
“Machine learning is the process of discovering and interpreting meaningful information, such as new correlations, patterns and trends by sifting through large amounts of data stored in repositories, using pattern recognition technologies as well as statistical and mathematical techniques” (Larose, 2005). From my understanding, machine learning is a process of using different analysis techniques to observe previously unknown, potentially meaningful information, and discover strong patterns and relationships from a large dataset. Professor Kasabov (2007b) classified computational models into three categories (e.g. global, local, and personalised) which have been widespread and used in the areas of data analysis and decision support in general, and in the areas of medicine and bioinformatics in particular. Most recently, the concept of personalised modelling has been widely applied to various disciplines such as personalised medicine, personalised drug design for known diseases (e.g. cancer, diabetes, brain disease, etc.) as well as for other modelling problems in ecology, business, finance, crime prevention, and so on. The philosophy behind the personalised modelling approach is that every person is different from others, thus he/she will benefit from having a personalised model and treatment. However, personalised modelling is not without issues, such as defining the correct number of neighbours or defining an appropriate number of features. As a result, the principal goal of this research is to study and address these issues and to create a novel framework and system for personalised modelling. The framework would allow users to select and optimise the most important features and nearest neighbours for a new input sample in relation to a certain problem based on a weighted variable distance measure in order to obtain more precise prognostic accuracy and personalised knowledge, when compared with global modelling and local modelling approaches.

Page generated in 0.0398 seconds