• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efforts Toward an Oxa-conjugate Addition Based Approach to (+)-Neopeltolide Synthesis

Hari, Taylor P.A. 31 July 2012 (has links)
(+)-Neopeltolide is a highly potent marine polyketide natural product with activity against multiple cancer cell lines in vitro. The nanomolar range of antifungal and anticancer cytotoxicity in this tetrahydropyran (THP)-containing polyketide, combined with its limited natural supply, has led to several syntheses. In this study, the feasibility of an oxa-Michael conjugate addition route to cis-2,6-THP rings is examined through the efforts toward a total synthesis of the macrocyclic core of (+)-neopeltolide using a highly convergent route. This study is based on the successful preliminary results with a simple 14-member ring model system and the synthesis of the key aldehyde intermediate shown below. The highlighted transformation of this synthesis will be a transannular oxa-conjugate addition to generate the cis-2,6-tetrahydropyran ring system. This route also highlights a highly convergent Wittig coupling to generate the full carbon framework of (+)-neopeltolide. One of the key goals of this project is to compare this synthesis with a chemo-enzymatic total synthesis that relies on chemistry catalyzed by polyketide synthase enzymes in the late stage of the synthesis.
2

Efforts Toward an Oxa-conjugate Addition Based Approach to (+)-Neopeltolide Synthesis

Hari, Taylor P.A. 31 July 2012 (has links)
(+)-Neopeltolide is a highly potent marine polyketide natural product with activity against multiple cancer cell lines in vitro. The nanomolar range of antifungal and anticancer cytotoxicity in this tetrahydropyran (THP)-containing polyketide, combined with its limited natural supply, has led to several syntheses. In this study, the feasibility of an oxa-Michael conjugate addition route to cis-2,6-THP rings is examined through the efforts toward a total synthesis of the macrocyclic core of (+)-neopeltolide using a highly convergent route. This study is based on the successful preliminary results with a simple 14-member ring model system and the synthesis of the key aldehyde intermediate shown below. The highlighted transformation of this synthesis will be a transannular oxa-conjugate addition to generate the cis-2,6-tetrahydropyran ring system. This route also highlights a highly convergent Wittig coupling to generate the full carbon framework of (+)-neopeltolide. One of the key goals of this project is to compare this synthesis with a chemo-enzymatic total synthesis that relies on chemistry catalyzed by polyketide synthase enzymes in the late stage of the synthesis.
3

Efforts Toward an Oxa-conjugate Addition Based Approach to (+)-Neopeltolide Synthesis

Hari, Taylor P.A. January 2012 (has links)
(+)-Neopeltolide is a highly potent marine polyketide natural product with activity against multiple cancer cell lines in vitro. The nanomolar range of antifungal and anticancer cytotoxicity in this tetrahydropyran (THP)-containing polyketide, combined with its limited natural supply, has led to several syntheses. In this study, the feasibility of an oxa-Michael conjugate addition route to cis-2,6-THP rings is examined through the efforts toward a total synthesis of the macrocyclic core of (+)-neopeltolide using a highly convergent route. This study is based on the successful preliminary results with a simple 14-member ring model system and the synthesis of the key aldehyde intermediate shown below. The highlighted transformation of this synthesis will be a transannular oxa-conjugate addition to generate the cis-2,6-tetrahydropyran ring system. This route also highlights a highly convergent Wittig coupling to generate the full carbon framework of (+)-neopeltolide. One of the key goals of this project is to compare this synthesis with a chemo-enzymatic total synthesis that relies on chemistry catalyzed by polyketide synthase enzymes in the late stage of the synthesis.
4

Chemoenzymatic Synthesis of Polyketide Natural Products

Hari, Taylor P. A. January 2018 (has links)
Polyketide secondary metabolites constitute a structurally-diverse and clinically-important family of natural products. The wide range of biological activities represented by these substrates have contributed to therapeutic agents with annual sales exceeding $20B USD. Large multi-domain proteins called polyketide synthases (PKSs) use simple building blocks to generate highly-oxygenated and stereochemically-rich frameworks with astonishing selectivity. These substrates often feature rigidifying biases imposed by macrocyclic lactones and substituted heterocycles, which can impact their bioactive conformation. The work of this dissertation combines synthetic chemistry and biochemistry to investigate chemoenzymatic production of macrocyclic polyketide natural products. Research focused on validating a transannular oxa-conjugate addition strategy to assembly 2,6-cis-tetrahydropyran (THP) ring systems, as demonstrated by synthesis of the macrocyclic core to neopeltolide. Ultimately, we wish to apply this chemistry to de novo PKS pathways for rapid, reliable, and sustainable production of THP-bearing products like neopeltolide, and toward building SAR libraries. Additionally, a second study probed the specificity of the macrolactonizing thioesterase (TE) domain from the 6-deoxyerythronolide B (DEBS) biosynthetic pathway. This pathway is the paradigm for type-I PKS systems, and is responsible for producing the macrolide core of erythromycin. Our on-going research evaluates the limits of promiscuity within this specific catalytic domain, to characterize the structural elements required to accurately predict macrolactonization. The long-term goal of this study is to assess the potential applicability of DEBS TE as a generalized cyclization biocatalyst for combinatorial biochemistry and chemoenzymatic research.

Page generated in 0.0299 seconds