• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction between nerve fiber formation and astrocytes

Hashemian, Sanazalsadat January 2014 (has links)
Parkinson’s disease, the second most common neurodegenerative disorder,is characterized by loss of nigrostriatal dopaminergic neurons. To date,there is no defined cause and cure for the disease. An ideal treatmentstrategy is to replace the lost neurons by transplanting fetal dopaminergicneurons to the brain of parkinsonian patients. Clinical trials have beenperformed and the outcome was variable where one significant obstaclewas the limited graft reinnervation of the host brain. To study this issue,organotypic tissue culture can be utilized to monitor dopaminergic nervefiber outgrowth in vitro and their association with astrocytes. Using thisculture technique, dopaminergic nerve fibers appear in twomorphologically and temporally different types. The early appearing nervefibers are formed in the absence of astrocytes, reach long distances, andare called non-glial-associated tyrosine hydroxylase (TH) -positive nervefibers. After a few days, the second sequence of nerve fibers, the glialassociatedTH-positive nerve fibers, are formed, and their growth arelimited to the presence of astrocytes, that migrate and form a monolayersurrounding the plated tissue. The aim of this thesis was to study theinteraction between nerve fiber formation and astrocytes with a specialfocus on the long-distance growing nerve fibers. Ventral mesencephalic(VM) organotypic slice cultures from embryonic day (E) 12, E14, and E18were incubated for 14, 21, 28, and 35 days in vitro (DIV). The resultsrevealed that the two morphologically different processes were found incultures from the younger stages, while no non-glial-associated growthwas found in cultures of tissue from E18. Instead neurons had migratedonto the migrating astrocytes. Astrocytes migrated longer distances intissue from older stages, and the migration reached a plateau at 21 DIV.Co-cultures of E14 VM tissue pieces and cell suspension of matureastrocytes promoted migration of neurons, as seen in E18 cultures. Thus,9the maturity of the astrocytes was an important factor for nerve fiberoutgrowth. Hence, targeting molecules secreted by astrocytes might bebeneficial for regeneration. Chondroitin sulfate proteoglycan (CSPG), amember of proteoglycan family, is produced by the astrocytes and has adual role of being permissive during development and inhibitory afterbrain injury in adult brain. Cultures were treated with chondroitinase ABC(ChABC) or methyl-umbelliferyl-β-D-xyloside (β-xyloside) in twodifferent protocols, early and late treatments. The results from the earlytreated cultures showed that both compounds inhibited the outgrowth ofnerve fibers and astrocytic migration in cultures from E14 tissue, while β-xyloside but not ChABC promoted the non-glial-associated growth incultures derived from E18 fetuses. In addition, β-xyloside but not ChABCinhibited neuronal migration in E18 cultures. Taken together, β-xylosideappeared more effective than ChABC in promoting nerve fiber growth.Another potential candidate, integrin-associated protein CD47, was studiedbecause of its role in synaptogenesis, which is important for nerve fibergrowth. Cultures from E14 CD47 knockout (CD47-/-) mice were plated andcompared to their wildtypes. CD47-/- cultures displayed a massive and longnon-glial-associated TH-positive nerve fiber outgrowth despite theirnormal astrocytic migration. Blocking either signal regulatory protein-α(SIRPα) or thrombospondin-1 (TSP-1), which bind to CD47, had nogrowth promoting effect. In conclusion, to promote nerve growth, youngertissue can grow for longer distances than older tissue, and inhibiting CSPGproduction promotes nerve growth in older tissue, while gene deletion ofCD47 makes the astrocytes permissive for a robust nerve fiber growth.
2

On dopamine neurons : nerve fiber outgrowth and L-DOPA effects

af Bjerkén, Sara January 2008 (has links)
Parkinson’s disease is a disorder mainly characterized by progressive degeneration of dopamine producing neurons in the substantia nigra of the midbrain. The most commonly used treatment strategy is to pharmacologically restore the lost function by the administration of the dopaminergic precursor L-DOPA. Another treatment strategy is to replace the degenerated neurons with immature fetal ventral mesencephalic tissue, or ultimately stem cell-derived tissue. Grafting trials have, however, revealed poor reinnervation capacity of the grafts, leaving much of the striata dopamine-denervated. An additional drawback is the upcoming of dyskinesia (involuntary movements), a phenomenon also observed during L-DOPA treatment of Parkinson’s disease patients. Attempts to characterize nerve fiber formation from dopamine neurons have demonstrated that the nerve fibers are formed in two morphologically diverse outgrowth patterns, one early outgrowth seen in the absence of astrocytes and one later appearing outgrowth seen in co-existence with astrocytes. The overall objective of this thesis has been to study the dopaminergic outgrowth including guidance of nerve fiber formation, and to look into the mechanisms of L-DOPA-induced dyskinesia. The first paper in this thesis characterizes the different outgrowth patterns described above and their relation to different glial cells. The study demonstrated the two different outgrowth patterns to be a general phenomenon, applying not only to dopamine neurons. Attempts of characterization revealed no difference of origin in terms of dopaminergic subpopulations, i.e. A9 or A10, between the outgrowth patterns. Furthermore, the “roller-drum” technique was found optimal for studying the dual outgrowth sequences. The second and the third paper also utilized the “roller-drum” technique in order to promote both patterns of neuronal fiber formation. The effects of glial cell line-derived neurotrophic factor (GDNF) on the formation of dopamine nerve fibers, was investigated. Cultures prepared from gdnf knockout mice revealed that dopaminergic neurons survive and form nerve fiber outgrowth in the absence of GDNF. The dopaminergic nerve fibers exhibited an outgrowth pattern consistent with that previous observed in rat. GDNF was found to exert effect on the glial-associated outgrowth whereas the non-glial-associated was not affected. Astrocytic proliferation was inhibited using cytosine β-D-arabinofuranoside, resulting in reduced glial-associated outgrowth. The non-glial-associated dopaminergic outgrowth was on the other hand promoted, and was retained over longer time in culture. Furthermore, the non-glial-associated nerve fibers were found to target the fetal frontal cortex. Different developmental stages were shown to promote and affect the outgrowths differently. Taken together, these data indicate and state the importance of astrocytes and growth factors for neuronal nerve fiber formation and guidance. It also stresses the importance of fetal donor age at the time for transplantation. The fourth and fifth studies focus on L-DOPA dynamics and utilize in vivo chronoamperometry. In study four, 6-OHDA dopamine-depleted rats were exposed to chronic L-DOPA treatment and then rated as dyskinetic or non-dyskinetic. The electrochemical recordings demonstrated reduced KCl-evoked release in the intact striatum after chronic L-DOPA treatment. Time for maximal dopamine concentration after L-DOPA administration was found to be shorter in dyskinetic animals than in non-dyskinetic animals. The serotonergic nerve fiber content in the striatum was evaluated and brains from dyskinetic animals were found to exhibit significantly higher nerve fiber density compared to non-dyskinetic animals. Furthermore, the mechanisms behind the conversion of L-DOPA to dopamine in 6-OHDA dopamine-depleted rats were studied. Local administration of L-DOPA in the striatum increased the KCl-evoked dopamine release in the intact striatum. Acute application of L-DOPA resulted sometimes in a rapid conversion to dopamine, probably without vesicle packaging. This type of direct conversion is presumably occurring in non-neuronal tissue. Furthermore, KCl-evoked dopamine releases were present upon local application of L-DOPA in the dopamine-depleted striatum, suggesting that the conversion to dopamine took place elsewhere, than in dopaminergic nerve fibers. In conclusion, these studies state the importance of astrocytes for neuronal nerve fiber formation and elucidate the complexity of L-DOPA conversion in the brain.

Page generated in 0.0703 seconds