• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extrusion-Printing of Multi-Channeled Two-Component Hydrogel Constructs from Gelatinous Peptides and Anhydride-Containing Oligomers

Krieghoff, Jan, Rost, Johannes, Kohn-Polster, Caroline, Müller, Benno M., Koenig, Andreas, Flath, Tobias, Schulz-Siegmund, Michaela, Schulze, Fritz-Peter, Hacker, Michael C. 02 May 2023 (has links)
The performance of artificial nerve guidance conduits (NGC) in peripheral nerve regeneration can be improved by providing structures with multiple small channels instead of a single wide lumen. 3D-printing is a strategy to access such multi-channeled structures in a defined and reproducible way. This study explores extrusion-based 3D-printing of two-component hydrogels from a single cartridge printhead into multi-channeled structures under aseptic conditions. The gels are based on a platform of synthetic, anhydride-containing oligomers for cross-linking of gelatinous peptides. Stable constructs with continuous small channels and a variety of footprints and sizes were successfully generated from formulations containing either an organic or inorganic gelation base. The adjustability of the system was investigated by varying the cross-linking oligomer and substituting the gelation bases controlling the cross-linking kinetics. Formulations with organic N-methyl-piperidin-3-ol and inorganic K2HPO4 yielded hydrogels with comparable properties after manual processing and extrusion-based 3D-printing. The slower reaction kinetics of formulations with K2HPO4 can be beneficial for extending the time frame for printing. The two-component hydrogels displayed both slow hydrolytic and activity-dependent enzymatic degradability. Together with satisfying in vitro cell proliferation data, these results indicate the suitability of our cross-linked hydrogels as multi-channeled NGC for enhanced peripheral nerve regeneration.
2

Functionalized Nanofiber Substrates for Nerve Regeneration

Silantyeva, Elena A. 26 June 2019 (has links)
No description available.
3

Use of a novel peripheral nerve conduit to support sciatic nerve regeneration in an animal model

Lan Chun Yang, Timothy 06 1900 (has links)
Introduction : Les conduits nerveux synthétiques représentent une alternative chirurgicale aux autogreffes dans la réparation des traumatismes aux nerfs périphériques. Afin d’améliorer la régénération nerveuse périphérique, plusieurs biomatériels, tels que la multicouche polyélectrolyte de soie (MPE), et modèles ont été étudiés. Dans le cadre de ma maitrise, nos objectifs de recherche sont d’établir si la MPE de soie permet d’améliorer la régénération nerveuse périphérique in vivo et si notre nouveau modèle de conduit (« jelly roll ») peut mener à une meilleure régénération du nerf sciatique chez le rat que le modèle de conduit creux. Méthodes : Dans cette étude, une technique chirurgicale in vivo de lacération et de réparation du nerf sciatique chez le rat fut utilisé. Cinq conditions expérimentales de conduits (autogreffe, conduit creux avec et sans MPE de soie et « jelly roll » avec et sans MPE de soie) furent implantées (n= 2 rats par condition). Après 4 semaines, les conduits furent récupérés et marqués par immunohistochimie avec le neurofilament et la protéine basique de la myéline (MBP). La performance de chaque conduit fut évaluée par sa capacité à supporter l’excroissance axonale à travers le long du conduit et à travers la largeur de ce dernier à divers endroits. Résultats : Chaque condition expérimentale a supporté une régénération axonale avec différents degrés de succès. Globalement, l’autogreffe a supporté une plus longue croissance de fibres. De plus, la surface de fibres obtenue était plus large que les autres conditions. Les conduits avec la MPE de soie ont eu une performance similaire à leurs homologues sans soie. De plus, le modèle de conduit creux a mené à une meilleure régénération axonale que le modèle du « jelly roll ». Conclusion : L’autogreffe demeure le meilleur conduit pour supporter la régénération nerveuse périphérique. Les conduits avec la MPE de soie peuvent supporter une régénération nerveuse similaire aux conduits sans soie tandis que le modèle de « jelly roll » a généré des performances inférieures au modèle de conduit creux. / Background: Synthetic nerve conduits constitute alternative surgical options to autografts in the repair of peripheral nerve injuries. Silk polyelectrolyte multilayer (PEM) as a biomaterial and novel conduit designs have been proposed to improve peripheral nerve regeneration. In my master’s project, my objective is to assess whether silk PEM can improve peripheral nerve regeneration in vivo and to assess whether our novel conduit design (“jelly roll”) can better support rat sciatic nerve regeneration than a hollow conduit design. Methods: In this study, an in vivo rat model of sciatic nerve laceration and repair was used. Five experimental conduit conditions (autograft, hollow conduit with and without silk PEM, and jelly roll with and without silk PEM) were implanted (n=2 rats per condition). After 4 weeks, the conduits were harvested and immuno-stained for neurofilament and myelin basic protein (MBP). Conduit performance was assessed by its ability to support axonal outgrowth throughout the conduit’s length and at various locations along its width. Results: Each condition supported axonal regeneration at varying levels of success. Overall, the autograft group outperformed all other groups by supporting the longest and widest occupying regenerating fibers. Conduits with silk PEM performed similarly to conduits without silk PEM. In addition, the hollow conduit design demonstrated better regenerative outcomes than the jelly roll design. Conclusion: The autograft remains the superior conduit to support peripheral nerve regeneration. Conduits with silk PEM support nerve regeneration in the same capacity as non silk-coated conduits while the jelly roll design underperformed in comparison to the hollow conduit design.

Page generated in 0.0523 seconds