• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 19
  • 19
  • 14
  • 12
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dynamics on complex networks with application to power grids

Pahwa, Sakshi January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Caterina Scoglio / The science of complex networks has significantly advanced in the last decade and has provided valuable insights into the properties of real world systems by evaluating their structure and construction. Several phenomena occurring in real technological and social systems can be studied, evaluated, quantified, and remedied with the help of network science. The electric power grid is one such real technological system that can be studied through the science of complex networks. The electric grid consists of three basic sub-systems: Generation, Transmission, and Distribution. The transmission sub-system is of particular interest in this work because its mesh-like structure offers challenging problems to complex networks researchers. Cascading dynamics of power grids is one of the problems that can be studied through complex networks. The North American Electric Reliability Corporation (NERC) defines a cascading failure as the uncontrolled successive loss of system elements triggered by an incident at any location. In this dissertation, we primarily discuss the dynamics of cascading failures in the power transmission grid, from a complex networks perspective, and propose possible solutions for mitigating their effects. We evaluate the grid dynamics for two specific scenarios, load growth and random fluctuations in the grid, to study the behavior of the grid under critical conditions. Further, we propose three mitigation strategies for reducing the damage caused by cascading failures. The first strategy is intentional islanding in the power transmission grid. The aim of this method is to intentionally split the grid into two or more separate self- sustaining components such that the initial failure is isolated and the separated components can function independently, with minimum load shedding. The second mitigation strategy involves controlled placement of distributed generation (DG) in the transmission system in order to enhance robustness of the grid. The third strategy requires the addition of a link in the transmission grid by reduction of the average spectral distance, utilizing the Ybus matrix of the grid and a novel algorithm. Through this dissertation, we aim to successfully cover the gap present in the complex networks domain, with respect to the vulnerability analysis of power grid networks.
22

Spectral Properties and Generation of Realistic Networks

Nicole E Eikmeier (6890684) 13 August 2019 (has links)
Picture the life of a modern person in the western world: They wake up in the morning and check their social networking sites; they drive to work on roads that connect cities to each other; they make phone calls, send emails and messages to colleagues, friends, and family around the world; they use electricity flowing through power-lines; they browse the Internet, searching for information. All of these typical daily activities rely on the structure of networks. A network, in this case, is a set of nodes (people, web pages, etc) connected by edges (physical connection, collaboration, etc). The term graph is sometimes used to represent a more abstract structure - but here we use the terms graph and network interchangeably. The field of network analysis concerns studying and understanding networks in order to solve problems in the world around us. Graph models are used in conjunction with the study of real-world networks. They are used to study how well an algorithm may do on a real-world network, and for testing properties that may further produce faster algorithms. The first piece of this dissertation is an experimental study which explores features of real data, specifically power-law distributions in degrees and spectra. In addition to a comparison between features of real data to existing results in the literature, this study resulted in a hypothesis on power-law structure in spectra of real-world networks being more reliable than that in the degrees. The theoretical contributions of this dissertation are focused primarily on generating realistic networks through existing and novel graph models. The two graph models presented are called HyperKron and the Triangle Generalized Preferential Attachment model. Both of the models incorporate higher-order structure - leading to more sophisticated properties not examined in traditional models. We use the second of our models to further validate the hypothesis on power-laws in the spectra. Due to the structure of our model, we show that the power-law in the spectra is more resilient to sub-sampling. This gives some explanation for why we see power-laws more frequently in the spectra in real world data.
23

Simulation and network analysis of nanoparticles agglomeration and structure formation with application to fuel cell catalyst inks

Movassaghi Jorshari, Razzi 21 May 2019 (has links)
Agglomeration of nanoparticles occurs in a number of colloidal systems related, for example, to material processing and drug delivery. The present work is motivated by the need to improve fundamental understanding of the agglomeration and structure formation processes that occur in catalyst inks used for the fabrication of polymer electrolyte fuel cells (PEMFCs). Particle dynamics simulations are performed to investigate agglomeration under various conditions. The interaction between particles is defined using realistic physical potentials, rather than commonly used potential models, and a novel analysis of the agglomeration and structure formation process is performed using network science concepts. The simulated systems correspond to catalyst inks consisting primarily of carbon nanoparticles in solution. The effect of various conditions such as different force magnitude, shape of the force function, concentration etc. are investigated in terms of network science parameters such as average degree and shortest path. An "agglomeration timescale" and a "restructuring timescale" introduced to interpret the evolution of the agglomeration process suggest that the structure, which has a strong impact on the performance of the eventual catalyst layer, can be controlled by tuning the rate at which particles are added based on the restructuring timescale. / Graduate
24

URBAN INFRASTRUCTURE NETWORKS: FUNCTIONAL TOPOLOGY AND INTERDEPENDENCE

Christopher J. Klinkhamer (5929904) 10 June 2019 (has links)
Cities are composed of multiple interconnected, interdependent infrastructure networks. These networks are expected to continuously operate at near 100\% of their designed service capacities. When the operation of just one of these networks is disrupted the effects are often not contained to a single network. How these networks function and interact is critically important in increasing urban community resilience when subjected to stochastic disruptions. Despite apparent differences in the physical qualities of both infrastructure and cities this work, uses principles of complex network analysis to reveal stunning similarities in the functional topology of infrastructure networks around the globe. Network based models are used to demonstrate how failures cascade between infrastructure networks. The severity of these cascades is shown to be influenced by population, design decisions, and localized variance within the larger infrastructure networks. These results are important for all design, maintenance, retrofitting, and resilience aspects of urban communities.
25

Harnessing Teamwork in Networks: Prediction, Optimization, and Explanation

January 2018 (has links)
abstract: Teams are increasingly indispensable to achievements in any organizations. Despite the organizations' substantial dependency on teams, fundamental knowledge about the conduct of team-enabled operations is lacking, especially at the {\it social, cognitive} and {\it information} level in relation to team performance and network dynamics. The goal of this dissertation is to create new instruments to {\it predict}, {\it optimize} and {\it explain} teams' performance in the context of composite networks (i.e., social-cognitive-information networks). Understanding the dynamic mechanisms that drive the success of high-performing teams can provide the key insights into building the best teams and hence lift the productivity and profitability of the organizations. For this purpose, novel predictive models to forecast the long-term performance of teams ({\it point prediction}) as well as the pathway to impact ({\it trajectory prediction}) have been developed. A joint predictive model by exploring the relationship between team level and individual level performances has also been proposed. For an existing team, it is often desirable to optimize its performance through expanding the team by bringing a new team member with certain expertise, or finding a new candidate to replace an existing under-performing member. I have developed graph kernel based performance optimization algorithms by considering both the structural matching and skill matching to solve the above enhancement scenarios. I have also worked towards real time team optimization by leveraging reinforcement learning techniques. With the increased complexity of the machine learning models for predicting and optimizing teams, it is critical to acquire a deeper understanding of model behavior. For this purpose, I have investigated {\em explainable prediction} -- to provide explanation behind a performance prediction and {\em explainable optimization} -- to give reasons why the model recommendations are good candidates for certain enhancement scenarios. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2018
26

Analysis of Controllability for Temporal Networks

Babak Ravandi (7456850) 17 October 2019 (has links)
Physical systems modeled by networks are fully dynamic in the sense that the process of adding edges and vertices never ends, and no edge or vertex is necessarily eternal. Temporal networks enable to explicitly study systems with a changing topology by capturing explicitly the temporal changes. The controllability of temporal networks is the study of driving the state of a temporal network to a target state at deadline t<sub>f</sub> within △t = t<sub>f</sub> - t<sub>0</sub> steps by stimulating key nodes called driver nodes. In this research, the author aims to understand and analyze temporal networks from the controllability perspective at the global and nodal scales. To analyze the controllability at global scale, the author provides an efficient heuristic algorithm to build driver node sets capable of fully controlling temporal networks. At the nodal scale, the author presents the concept of Complete Controllable Domain (CCD) to investigate the characteristics of Maximum Controllable Subspaces (MCSs) of a driver node. The author shows that a driver node can have an exponential number of MCSs and introduces a branch and bound algorithm to approximate the CCD of a driver node. The proposed algorithms are evaluated on real-world temporal networks induced from ant interactions in six colonies and in a set of e-mail communications of a manufacturing company. At the global scale, the author provides ways to determine the control regime in which a network operates. Through empirical analysis, the author shows that ant interaction networks operate under a distributed control regime whereas the e-mails network operates in a centralized regime. At the nodal scale, the analysis indicated that on average the number of nodes that a driver node always controls is equal to the number of driver nodes that always control a node. <br>
27

Autonomic Core Network Management System

Tizghadam, Ali 11 December 2009 (has links)
This thesis presents an approach to the design and management of core networks where the packet transport is the main service and the backbone should be able to respond to unforeseen changes in network parameters in order to provide smooth and reliable service for the customers. Inspired by Darwin's seminal work describing the long-term processes in life, and with the help of graph theoretic metrics, in particular the "random-walk betweenness", we assign a survival value, the network criticality, to a communication network to quantify its robustness. We show that the random-walk betweenness of a node (link) consists of the product of two terms, a global measure which is fixed for all the nodes (links) and a local graph measure which is in fact the weight of the node (link). The network criticality is defined as the global part of the betweenness of a node (link). We show that the network criticality is a monotone decreasing, and strictly convex function of the weight matrix of the network graph. We argue that any communication network can be modeled as a topology that evolves based on survivability and performance requirements. The evolution should be in the direction of decreasing the network criticality, which in turn increases the network robustness. We use network criticality as the main control parameter and we propose a network management system, AutoNet, to guide the network evolution in real time. AutoNet consists of two autonomic loops, the slow loop to control the long-term evolution of robustness throughout the whole network, and the fast loop to account for short-term performance and robustness issues. We investigate the dynamics of network criticality and we develop a convex optimization problem to minimize the network criticality. We propose a network design procedure based on the optimization problem which can be used to develop the long-term autonomic loop for AutoNet. Furthermore, we use the properties of the duality gap of the optimization problem to develop traffic engineering methods to manage the transport of packets in a network. This provides for the short-term autonomic loop of AutoNet architecture. Network criticality can also be used to rank alternative networks based on their robustness to the unpredicted changes in network conditions. This can help find the best network structure under some pre-specified constraint to deal with robustness issues.
28

Autonomic Core Network Management System

Tizghadam, Ali 11 December 2009 (has links)
This thesis presents an approach to the design and management of core networks where the packet transport is the main service and the backbone should be able to respond to unforeseen changes in network parameters in order to provide smooth and reliable service for the customers. Inspired by Darwin's seminal work describing the long-term processes in life, and with the help of graph theoretic metrics, in particular the "random-walk betweenness", we assign a survival value, the network criticality, to a communication network to quantify its robustness. We show that the random-walk betweenness of a node (link) consists of the product of two terms, a global measure which is fixed for all the nodes (links) and a local graph measure which is in fact the weight of the node (link). The network criticality is defined as the global part of the betweenness of a node (link). We show that the network criticality is a monotone decreasing, and strictly convex function of the weight matrix of the network graph. We argue that any communication network can be modeled as a topology that evolves based on survivability and performance requirements. The evolution should be in the direction of decreasing the network criticality, which in turn increases the network robustness. We use network criticality as the main control parameter and we propose a network management system, AutoNet, to guide the network evolution in real time. AutoNet consists of two autonomic loops, the slow loop to control the long-term evolution of robustness throughout the whole network, and the fast loop to account for short-term performance and robustness issues. We investigate the dynamics of network criticality and we develop a convex optimization problem to minimize the network criticality. We propose a network design procedure based on the optimization problem which can be used to develop the long-term autonomic loop for AutoNet. Furthermore, we use the properties of the duality gap of the optimization problem to develop traffic engineering methods to manage the transport of packets in a network. This provides for the short-term autonomic loop of AutoNet architecture. Network criticality can also be used to rank alternative networks based on their robustness to the unpredicted changes in network conditions. This can help find the best network structure under some pre-specified constraint to deal with robustness issues.
29

Exploitation of complex network topology for link prediction in biological interactomes

Alanis Lobato, Gregorio 06 1900 (has links)
The network representation of the interactions between proteins and genes allows for a holistic perspective of the complex machinery underlying the living cell. However, the large number of interacting entities within the cell makes network construction a daunting and arduous task, prone to errors and missing information. Fortunately, the structure of biological networks is not different from that of other complex systems, such as social networks, the world-wide web or power grids, for which growth models have been proposed to better understand their structure and function. This means that we can design tools based on these models in order to exploit the topology of biological interactomes with the aim to construct more complete and reliable maps of the cell. In this work, we propose three novel and powerful approaches for the prediction of interactions in biological networks and conclude that it is possible to mine the topology of these complex system representations and produce reliable and biologically meaningful information that enriches the datasets to which we have access today.
30

'Blood-Talk': A Language Network Analysis of English Speaking Heritage Butchers in the Southwestern United States

Stinnett, Angie Ashley January 2013 (has links)
Recently, network theory has been used to analyze the formal syntactic and semantic properties of written texts to explain the development of language (Solé et al. 2005). While foundational, this approach neglects the social and cultural pressures affecting language in interaction, a central focus of sociolinguistics and linguistic anthropology (Hymes 1974, Goffman 1981, Gumperz 1982, Goodwin 2006). The influential work of M.M. Bakhtin (1981) frames speech as an emergent social process inflected by shifting patterns of negotiated meanings. As Hill (1986) observed "the enormous impact of Bakhtin's work, already felt with earthquake strength in literary studies...[is] now beginning to appear with equal force in the anthropology of language" (1986: 89).The aim of this research is to test the conjecture that by expanding the frame of language network analysis to include the social context of speech, the emergent properties of heteroglossia predicted by Bakhtin will be clarified. This analysis builds on prior research on language in interaction, drawing from sociolinguistic analysis (Sacks et al. 1974, Atkinson & Heritage 1984), word frequency (Nelson et al. 1998, Mendoza-Denton 2003), and network analysis (Bearman & Stovel 2000, de Nooy et al. 2005, Solé et al. 2005, Mehler 2010).According to Bakhtin, heteroglossia emerges as speakers "appropriate the words of others and populate them with one's own intention" (1981:428). This multi-sited doctoral research investigates the speech of butchers through participant observation, work place interactions and interviews, with a focus on references to blood. Some of the semantic features that become affixed to blood are due to historical and popular culture understandings of this signifier, while other salient features derive from subject positionality and community of practice (Lave & Wenger 1991). This work provides a snapshot of all of these processes at work in the speech of an occupational community of American butchers. The results of this analysis show that including the social context has significant effects on the conceptualization of both semantic and social networks, in comparison with networks derived exclusively from written texts.

Page generated in 0.075 seconds