Spelling suggestions: "subject:"network forms"" "subject:"network words""
1 |
Using Plant Epidemiological Methods to Track Computer Network WormsPande, Rishikesh A. 28 May 2004 (has links)
Network worms that scan random computers have caused billions of dollars in damage to enterprises across the Internet. Earlier research has concentrated on using epidemiological models to predict the number of computers a worm will infect and how long it takes to do so. In this research, one possible approach is outlined for predicting the spatial flow of a worm within the local area network (LAN).
The approach in this research is based on the application of mathematical models and variables inherent in plant epidemiology. In particular, spatial autocorrelation has been identified as a candidate variable that helps predict the spread of a worm over a LAN. This research describes the application of spatial autocorrelation to the geography and topology of the LAN and describes the methods used to determine spatial autocorrelation. Also discussed is the data collection process and methods used to extract pertinent information. Data collection and analyses are applied to the spread of three historical network worms on the Virginia Tech campus and the results are described.
Spatial autocorrelation exists in the spread of network worms across the Virginia Tech campus when the geographic aspect is considered. If a new network worm were to start spreading across Virginia Tech's campus, spatial autocorrelation would facilitate tracking the geographical locations of the spread. In addition if an infection with a known value of spatial autocorrelation is detected, the characteristics of the worm can be identified without a complete analysis. / Master of Science
|
2 |
Graph-theoretic Approach To Modeling Propagation And Control Of Network WormsNikoloski, Zoran 01 January 2005 (has links)
In today's network-dependent society, cyber attacks with network worms have become the predominant threat to confidentiality, integrity, and availability of network computing resources. Despite ongoing research efforts, there is still no comprehensive network-security solution aimed at controling large-scale worm propagation. The aim of this work is fivefold: (1) Developing an accurate combinatorial model of worm propagation that can facilitate the analysis of worm control strategies, (2) Building an accurate epidemiological model for the propagation of a worm employing local strategies, (3) Devising distributed architecture and algorithms for detection of worm scanning activities, (4) Designing effective control strategies against the worm, and (5) Simulation of the developed models and strategies on large, scale-free graphs representing real-world communication networks. The proposed pair-approximation model uses the information about the network structure--order, size, degree distribution, and transitivity. The empirical study of propagation on large scale-free graphs is in agreement with the theoretical analysis of the proposed pair-approximation model. We, then, describe a natural generalization of the classical cops-and-robbers game--a combinatorial model of worm propagation and control. With the help of this game on graphs, we show that the problem of containing the worm is NP-hard. Six novel near-optimal control strategies are devised: combination of static and dynamic immunization, reactive dynamic and invariant dynamic immunization, soft quarantining, predictive traffic-blocking, and contact-tracing. The analysis of the predictive dynamic traffic-blocking, employing only local information, shows that the worm can be contained so that 40\% of the network nodes are not affected. Finally, we develop the Detection via Distributed Blackholes architecture and algorithm which reflect the propagation strategy used by the worm and the salient properties of the network. Our distributed detection algorithm can detect the worm scanning activity when only 1.5% of the network has been affected by the propagation. The proposed models and algorithms are analyzed with an individual-based simulation of worm propagation on realistic scale-free topologies.
|
Page generated in 0.0513 seconds