• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchungen zu den genetischen Ursachen hereditärer Netzhautdegenerationen des Menschen / Analyses of the genetic causes of hereditary retinal degenerations in human

Sauer, Christian January 2001 (has links) (PDF)
Die Positionsklonierung hat sich als erfolgreiche Strategie zur Identifizierung und Isolierung von Genen erwiesen. Da ihre Anwendung im Allgemeinen keine Informationen über den zugrundeliegenden Pathomechanismus einer Erkrankung voraussetzt, eignen sich die Methoden der Positionsklonierung in besonderem Maße für die Erforschung hereditärer Netzhauterkrankungen. Im Rahmen der hier vorliegenden Arbeit wurden sie zur Untersuchung ausgewählter retinaler Degenerationen eingesetzt. Dabei konnten wichtige Beiträge für die Aufklärung der genetische Ursachen dieser Erkrankungen geleistet werden. Die autosomal dominante North Carolina Makuladystrophie (NCMD) oder die zentral areoläre Pigmentepitheldystrophie (CAPED) sind allelische Erkrankungen mit allenfalls gering progredientem Verlauf. Ihr Genlokus liegt in einem etwa 7,2 cM großen Bereich auf 6q14-q16.2 zwischen den DNA-Markern D6S424 und D6S1671. Mit Hilfe von 21 polymorphen DNA-Markern welche den NCMD-Lokus (MCDR1) flankieren, wurden Kopplungsanalysen in drei deutschen NCMD-Familien durchgeführt. Die Analyse der krankheitsassoziierten Haplotypen erbrachte Hinweise auf einen gemeinsamen Vorfahren aller drei Familien. Darüber hinaus konnte der MCDR1-Lokus auf 3,2 cM eingeengt werden und wird von den Markern D6S249 und D6S475 flankiert. Dies bedeutet einen wichtigen Schritt auf dem Weg zur Klonierung des zugrundeliegenden Krankheitsgens. Eine häufige Ursache für den frühzeitigen Verlust der zentralen Sehschärfe bei Jungen ist die X-gebundene juvenile Retinoschisis (RS). Ihr Genlokus wurde in einen etwa 900 kb großen Bereich auf dem kurzen Arm des X-Chromosoms (Xp22.2) kartiert, wo er von den DNA-Markern DXS418 und DXS999/DXS7161 flankiert wird. Die Analyse von EST-Sequenzen aus dieser Region ermöglichte die Isolierung eines neuen retinaspezifischen Transkriptes, welches als RS1 bezeichnet wurde. Das RS1-Gen besteht aus sechs Exonen und codiert ein Protein, welches eine in der Evolution hoch konservierte Discoidin-Domäne enthält. Diese Domäne ist in anderen Proteinen u.a. an der Ausbildung von Zell-Zell-Interaktionen beteiligt. Mutationsanalysen in betroffenen Personen aus neun nicht-verwandten RS-Familien ergaben neun verschiedene Sequenzveränderungen die mit dem Krankheitsbild der jeweiligen Familie segregierten. Einen ersten Einblick in die zeitliche und räumliche Expression ergab die Untersuchung des murinen Orthologs Rs1h mit Hilfe von Northern Blot, RT-PCR und RNA in situ-Hybridisierungen. Rs1h wird in der Maus hauptsächlich in den Photorezeptoren exprimiert. Die Expression beginnt erst postnatal und ist mit der Entwicklung der Photorezeptoren korreliert. Das Auftreten zahlreicher weißlich-gelber Flecken, sogenannter Drusen, in radiärer Anordung am hinteren Augenpol ist das charakteristische Merkmal einer Gruppe von Netzhauterkrankungen mit gemeinsamer Ätiologie, die unter dem Begriffen Doynsche Honigwaben Dystrophie (DHRD), Malattia Leventinese (MLVT) oder radiäre Drusen zusammengefasst werden. Der Genlokus dieser Erkrankung wurde auf den kurzen Arm von Chromosom 2 in den Bereich 2p16 kartiert. Die Durchsuchung von EST-Datenbanken führte zur Identifizierung des neuronal exprimerten Gens pNEU60. Dieses besteht aus zwei Exonen, wobei der vollständige codierende Bereich im zweiten Exon liegt. Die Analyse des pNEU60-Proteins ergab eine Struktur aus sieben Transmembrandomänen, dem gemeinsamen Merkmal G-Protein gekoppelter Rezeptoren, wie z.B. Rhodopsin. Patienten mit radiären Drusen zeigten keinerlei Sequenzveränderungen in pNEU60. Die Untersuchung von fast 200 Patienten mit der phänotypisch sehr ähnlichen altersbedingten Makuladegeneration (AMD), führte zur Identifizierung von drei potentiellen Mutationen, darunter eine nonsense-Mutation, sowie zwei polymorphen Veränderungen. Die Assoziation einer einzigen missense-Mutation (R345W) im ubiquitär exprimierten Gen EFEMP1 (EGF-containing fibulin-like extracellular matrix protein 1) mit der DHRD und MLVT wurde von einer amerikanischen Arbeitsgruppe nachgewiesen. Die R345W Mutation in diesem proximal zu pNEU60 liegenden Gen wurde in den zur Verfügung stehenden zwei MLVT-Familien sowie einer DHRD-Familie nachgewiesen. Bei der Analyse von 14 Patienten mit sporadischen radiären Drusen konnte weder die R345W Mutation, noch irgendeine andere krankheitsassoziierte Mutation nachgewiesen werden. Es wurden jedoch drei polymorphe Sequenzvarianten, sowie zwei polymorphe Di- bzw. Trinukleotidsequenzen identifiziert. Die Klonierung des orthologen EFEMP1-Gens des Rinds diente als Voraussetzung zur Untersuchung der Interaktionsfähigkeit von EFEMP1 mit anderen Proteinen. Mit der Anwendung des Hefe Zwei-Hybrid Systems konnte gezeigt werden, dass die EGF-Domänen von EFEMP1 eine Interaktion mit sich selbst ermöglichen. Die Einführung der R345W Mutation hatte dabei keinen Einfluss auf diese Wechselwirkungen. Die beschriebene Interaktion mit dem zur Familie der Ubiquiline gehörenden Protein DA41 konnte nicht reproduziert werden. Das Gen welches mit der inkompletten Form der X-gebundenen kongenitalen stationären Nachtblindheit (CSNB2) assoziiert ist, codiert die a1-Untereinheit des retinaspezifischen spannungsabhängigen L-Typ Kalziumkanals (CACNA1F). Mit Hilfe von RT-PCR Analysen und RNA in situ-Hybridisierungen wurde die räumliche Expression dieses Gens in der Netzhaut untersucht. Dabei wurde das CACNA1F-Transkript in der äußeren und inneren Körnerschicht, sowie in der Ganglienzellschicht nachgewiesen. / The positional cloning strategy is a powerful tool for the identification and isolation of genes. The application of positional cloning methods to the investigation of hereditary retinal disorders proved to be suitable as they require no informations about the pathology underlying the disease. For the investigations described in this thesis several retinal degenerations were selected for the examination with the positional cloning strategy. The findings of those researches contribute to the further enlightenment of the genetic causes of those disorders. Autosomal dominant North Carolina macular dystrophy (NCMD) or central areolar pigment epithelial dystrophy (CAPED) is an allelic disorder with slow progression. It maps to an approximately 7.2 cM interval between DNA markers at D6S424 and D6S1671 on 6q14-q16.2. A total of 21 polymorphic DNA markers flanking the NCMD locus (MCDR1) were used for genetic linkage analysis in three multigeneration families of German descent expressing the NCMD phenotype. The analysis of the disease associated haplotypes provide evidence for an ancestral founder for all three families. In addition the haplotype analysis refined the MCDR1 locus to a 3.2 cM interval flanked by markers D6S249 and D6S475. This facilitates further approaches in cloning the gene underlying NCMD. X-linked juvenile retinoschisis (RS) is an important cause of early vision lost in males. The RS gene has been localized to Xp22.2 to an approximately 900 kb interval between DXS418 and DXS999/DXS7161. The analysis of expressed sequence tags (ESTs) have identified a novel transcript, designated RS1, within the RS locus that is exclusively expressed in retina. RS1 consists of six exons and encodes for a protein containing the highly conserved discoidin-domain which is implicated in cell-cell interaction. Mutational analyses of RS1 in affected individuals from nine unrelated RS families revealed nine different sequence variations segregating with the disease phenotype in the respective families. The temporal and spatial expression of the murine ortholog Rs1h was studied by northern blot and RT-PCR analyses as well as RNA in situ hybridizations. Predominant expression of Rs1h was found in photoreceptor cells starting postnatal with correlation to photoreceptor development. The appearance of multiple yellowish-white drusen in the posterior pole of the retina is characteristic of a group of retinal disorders with a common etiology, often referred to a Doyne honeycomb retinal dystrophy (DHRD), Malattia Leventinese (MLVT) or radial drusen. The gene underlying this disorder has been mapped to the short arm of chromosome 2 at 2p16. EST database searches led to the identification of the neuronal tissue specific gene pNEU60. The complete coding sequence of this gene is located in the second of two exons. Motif searches in protein databases revealed homology to a seven transmembrane domain which is a hallmark for G-protein coupled receptors like rhodopsin. While mutational analyses in patients with radial drusen identified no sequence variation in pNEU60, three potential pathogenic variants and two frequent polymorphic changes were found in a cohort of almost 200 patients with phenotypically similar age-related macular degeneration (AMD). The association of DHRD and MLVT with a single missense mutation (R345W) in the ubiquitously expressed gene encoding the EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) has been recently demonstrated by a research group from the United States. The presence of the R345W mutation has been demonstrated for our two MLVT-families and the one DRHD-family. The mutational analyses in 14 unrelated individuals with sporadic early onset drusen did not detect the R345W mutation or any other disease-associated mutation. Three different polymorphic sequence variations and two intragenic polymorphic repeats were present in similar frequencies in the patients and control individuals. As a prerequisite to the analysis of the interaction capability of EFEMP1, he bovine ortholog of this gene has been cloned. The use of a yeast two hybrid system demonstrated that the EGF-motifs of EFEMP1 could interact with each other. The introduction of the R345W mutation had no effect on that interaction. The described interaction of EFEMP1 with DA41, a family member of the ubiquilin protein family could not be reproduced. The gene associated with the incomplete form of the X-linked congenital stationary nightblindness encodes the a1-subunit of a retina specific L-type calcium-channel (CACNA1F). The spatial expression of this gene within the retina has been investigated by RT-PCR analyses and RNA in situ hybridizations. Transcriptional activity could be detected in the outer an inner nuclear layer as well as in the ganglion cell layer.
2

Echtzeitfahiger Retina-Encoder mit individuell, in verschiedenen Parameterraumen einstellbaren spatiotemporalen Filtern /

Hunermann, Ralph. January 1900 (has links)
Thesis--RWTH Aachen, 2000.
3

Incorporation, polarization and maturation of human photoreceptor transplants in the mouse retina

Tessmer, Karen 18 April 2023 (has links)
Photoreceptors are highly specialized neurons within the eye and the key retinal cells sensing light. They are indispensable for our visual perception and loss of photoreceptors consequently leads to loss of vision, a sense that alone is responsible for more than 30% of the input to our brain. Vision impairment and blindness is a leading cause of disability in the industrialized world and is in many cases ultimately due to a degeneration of the photoreceptors, which cannot be halted or reversed. Retinal degenerative diseases encompass a heterogeneous group of etiologies, mainly caused by various mutations in a plethora of proteins involved in the visual process. Currently, several therapeutic options are being explored, with so far one gene therapy for a rare inherited blinding condition being clinically approved. However, the gene therapy approach requires not only the presence of remaining photoreceptors but the tailoring of the therapy to each individual mutation. An alternative, more generally applicable approach is to restore vision through photoreceptor replacement therapy. As such, research on mouse-to-mouse photoreceptor transplantations has been carried out for many years, though with mixed results. In the last decade, it has however also become possible to generate large quantities of human photoreceptors through retinal organoid technology, allowing to instead transplant human cells. While promising, this field is still in development and principal conditions for successful photoreceptor transplantation have yet to be defined. Here, human-to-mouse photoreceptor transplantations were performed and assessed with the aim to receive insights into retinal cell replacement technology with specific focus on photoreceptor maturation, polarization and functional integration. Using a cone-degeneration host line, large-scale incorporation of human photoreceptor grafts into the murine retina was shown for the first time. It was found that for human photoreceptors, the choice of developmental stage strongly affects incorporation and maturation capacity. Furthermore, the results demonstrate the necessity of adequate graft-host interaction for successful transplant maturation and function, suggesting that photoreceptor replacement strategies might benefit from transplantation in earlier rather than late stages of retinal degeneration. Taken together, this thesis lays important groundwork for the further development of human photoreceptor replacement strategies to treat retinal degenerative disease.:ACKNOWLEDGEMENTS I ABSTRACT III ZUSAMMENFASSUNG V PUBLICATIONS VII TABLE OF CONTENTS IX LIST OF FIGURES XIII LIST OF TABLES XIV GENERAL ABBREVIATIONS XV GENE AND PROTEIN ABBREVIATIONS XVII 1 INTRODUCTION 1 1.1 THE RETINA AND LIGHT PERCEPTION 1 1.1.1 General structure of the eye 1 1.1.2 General structure of the retina 1 1.1.3 General photoreceptor structure 3 1.1.4 Phototransduction 4 1.1.5 Signal transmission to the brain 6 1.1.6 Major differences between rods and cones 7 1.1.7 The role of Müller glia in photoreceptor support and light perception 9 1.2 RETINAL DEGENERATION DISEASES AND TREATMENT OPTIONS 11 1.2.1 Retinal degeneration diseases 11 1.2.2 Therapeutic approaches to treat retinal degeneration diseases 12 1.3 CELL REPLACEMENT AS TREATMENT APPROACH FOR RETINOPATHIES 14 1.3.1 Transplantations of rodent retinal tissue and cells 14 1.3.2 Transplantations of human retinal tissue and cells 17 1.4 AIM OF THIS THESIS 22 2 CHARACTERIZATION OF CRX-MCHERRY HUMAN RETINAL ORGANOIDS AS PHOTORECEPTOR CELL SOURCE 23 2.1 AIMS 23 2.2 CHARACTERIZATION OF CRX-MCHERRY REPORTER-EXPRESSING CELLS 23 2.2.1 Crx-mCherry expression overlaps with endogenous CRX expression and increases over time 23 2.2.2 Crx-mCherry organoids contain an outer and an inner nuclear layer 24 2.2.3 Crx-mCherry+ cells express early and mature rod and cone markers 25 2.2.4 Crx-mCherry+ cells do not express proliferation markers 27 2.3 ENRICHMENT AND CHARACTERIZATION OF CRX-MCHERRY+ DONOR CELLS 28 2.3.1 Enrichment of Crx-mCherry+ cells by FACS 28 2.3.2 Characterization of Crx-mCherry enriched cells by single cell sequencing 29 2.3.3 Characterization of D200 Crx-mCherry-enriched cells by immunocytochemistry 30 2.4 SUMMARY 31 3 TRANSPLANTATION OF HUMAN CRX-MCHERRY+ GRAFTS AGED D100, D200 AND D300 INTO CPFL1 MICE 33 3.1 AIMS 33 3.2 CRX-MCHERRY+ CELLS OF ALL AGES CAN BE TRANSPLANTED AND SURVIVE IN THE MURINE RETINA 33 3.2.1 Human grafts can be identified by RCVRN staining 34 3.2.2 D100 Crx-mCherry+ transplants are larger than D200 and D300 grafts 34 3.2.3 Graft volume increase over time is not due to in vivo proliferation 36 3.3 GRAFT MORPHOLOGY DIFFERS WITH DONOR AGES 37 3.3.1 Human grafts can adopt an intraretinal position 37 3.3.2 Graft positioning changes over time 37 3.3.3 Qualitative differences in graft morphology between donor ages 38 3.4 GRAFT MATURATION 41 3.4.1 D200 but not D100 or D300 grafts develop large quantities of inner segments 41 3.4.2 Inner segment development is associated with close proximity to the host retina 42 3.5 HUMAN IDENTITY OF INTRARETINAL GRAFTS 43 3.5.1 Intraretinal Crx-mCherry+ grafts are largely a result of true morphological incorporation 43 3.5.2 Rare indications of potential human-to-mouse material transfer 45 3.6 SUMMARY 47 4 IN DEPTH CHARACTERIZATION OF TRANSPLANTED D200 CRX-MCHERRY+ CELLS 49 4.1 AIMS 49 4.2 EARLY POST TRANSPLANTATION DYNAMICS IN GRAFT POSITIONING AND GRAFT-HOST INTERACTIONS 49 4.2.1 Intraretinal and proximal D200 grafts interact with the host retina while isolated and distal clusters show only little interaction 49 4.2.2 Incorporation of D200 grafts is first evident at 8 weeks post transplantation 50 4.2.3 Host Müller glia extend processes into the graft before host bipolar cells 51 4.2.4 MG staining in D200 grafts originates from host MG 51 4.3 INCORPORATING D200 GRAFTS POLARIZE AND FORM STRUCTURES OF MATURE PHOTORECEPTORS 53 4.3.1 Grafts and host form an outer limiting membrane (OLM)-like structure 53 4.3.2 Inner segment formation occurs where an OLM is formed 54 4.3.3 Incorporating grafts form outer segment-like structures 55 4.3.4 Incorporating grafts form synaptic structures 57 4.3.5 Transplanted Crx-mCherry+ cells become enriched for cones 58 4.3.6 Higher levels of mature photoreceptor markers in ex vivo compared to in vitro cones 60 4.4 INCORPORATION AND MATURATION CAPACITY DEPEND ON THE HOST ENVIRONMENT 63 4.4.1 Graft morphology and maturation in C57BL/6JRj recipients resembles that in Cpfl1 hosts 63 4.4.2 Graft morphology and maturation in highly degenerated rd1 and tgCR host lines differs strongly from the outcome in models with an ONL 63 4.5 SUMMARY 67 5 FUNCTIONAL ASSESSMENT OF TRANSPLANTED CRX-MCHERRY+ CELLS 69 5.1 AIMS 69 5.2 HIGH-LEVEL FUNCTION 69 5.2.1 Light-Dark Box 69 5.3 TISSUE-LEVEL FUNCTION 71 5.3.1 Multi-electrode array assessment of D200+26w grafts in Cpfl1 mice 71 5.3.2 Isolation of cone-mediated RGC response through photopic light stimulation and L-AP4 addition 71 5.3.3 Graft-containing retinal portions exhibit cone-mediated light responses 72 5.4 SUMMARY 74 6 DISCUSSION AND FUTURE PERSPECTIVES 75 6.1 HUMAN GRAFTS CAN MORPHOLOGICALLY INCORPORATE INTO THE MODERATELY DEGENERATED MOUSE RETINA 75 6.2 INTRARETINAL GRAFTS MOSTLY REPRESENT TRUE INCORPORATION EVENTS, NOT MATERIAL TRANSFER 76 6.3 GRAFT MATURATION DEPENDS ON GRAFT-HOST INTERACTION 77 6.4 ESTABLISHMENT OF GRAFT-HOST INTERACTION AND GRAFT INCORPORATION 78 6.5 D200 CRX-MCHERRY+ CELLS ARE THE PREFERABLE DONOR POPULATION COMPARED TO D100 AND D300 80 6.6 CONES SHOW PREFERENTIAL SURVIVAL POST GRAFTING 81 6.7 FUNCTIONAL ANALYSES OF TRANSPLANTED ANIMALS 82 6.8 FUTURE CLINICAL TRANSLATION 85 6.9 MAJOR CONTRIBUTION TO OTHER WORK 88 7 FINAL CONCLUSION 89 8 MATERIALS AND METHODS 91 8.1 STUDY APPROVAL 91 8.2 MATERIALS 91 8.2.1 Materials and Chemicals 91 8.2.2 Cell Line 92 8.2.3 Mouse Lines 92 8.2.4 Antibodies 93 8.3 METHODS 95 8.3.1 Cell culture 95 8.3.2 Transplantations 96 8.3.3 Functional analyses 98 8.3.4 Immunohistochemistry and Immunocytochemistry 100 8.3.5 Imaging and image processing 103 8.3.6 Statistics 106 8.3.7 Single cell sequencing 107 8.3.8 Bioinformatic analysis 108 9 BIBLIOGRAPHY 111 10 APPENDIX 128 10.1 APPENDIX 1: ERKLÄRUNGEN ZUR ERÖFFNUNG DES PROMOTIONSVERFAHRENS 128 10.2 APPENDIX 2: BESTÄTIGUNG ÜBER EINHALTUNG DER AKTUELLEN GESETZLICHEN VORGABEN 129

Page generated in 0.0963 seconds