• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 13
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Integralformeln und a priori-Abschätzungen für das [delta bar]-Neumann-Problem

Strauss, Albrecht. January 1988 (has links)
Thesis (doctoral)--Universität Bonn, 1988. / Cover title: Integraldarstellungen und a priori-Abschätzungen für das [delta bar]-Neumann-Problem. Includes bibliographical references (p. 94-96).
12

The second eigenfunction of the Neumann Laplacian on thin regions /

Zaveri, Sona. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 64-65).
13

A sufficient condition for subellipticity of the d-bar-Neumann problem

Herbig, Anne-Katrin 29 September 2004 (has links)
No description available.
14

PARTICLE REPRESENTATIONS FOR FINITE GAP OPERATORS (BAKER-AKHIEZER).

SCHILLING, RANDOLPH JAMES. January 1982 (has links)
It is known that finite gap potentials of Hill's equation y" + q(τ)y = Ey can be obtained as solutions of an integrable dynamical system: uncoupled harmonic oscillators constrained to move on the unit sphere in configuration space--The Neumann System. This Dissertation systematizes and generalizes this result. First, the theory of Baker-Akhiezer functions is placed on a solid mathematical foundation. Guided by the theory of Baker-Akhiezer functions and Riemann surfaces, trace formulas, particle systems, constraints, integrals and Lax pairs are systematically constructed for the particle system of the ℓ x ℓ matrix differential operator of order n.
15

The [gamma]-Neumann problem on pseudo-convex domains.

January 1981 (has links)
by Yu Wai-kuen. / Thesis (M. Phil.)--Chinese University of Hong Kong, 1981. / Bibliography: l. 52-55.
16

Nonlocal Neumann volume-constrained problems and their application to local-nonlocal coupling

Tao, Yunzhe January 2019 (has links)
As alternatives to partial differential equations (PDEs), nonlocal continuum models given in integral forms avoid the explicit use of conventional spatial derivatives and allow solutions to exhibit desired singular behavior. As an application, peridynamic models are reformulations of classical continuum mechanics that allow a natural treatment of discontinuities by replacing spatial derivatives of stress tensor with integrals of force density functions. The thesis is concerned about the mathematical perspective of nonlocal modeling and local-nonlocal coupling for fracture mechanics both theoretically and numerically. To this end, the thesis studies nonlocal diffusion models associated with ``Neumann-type'' constraints (or ``traction conditions'' in mechanics), a nonlinear peridynamic model for fracture mechanics with bond-breaking rules, and a multi-scale model with local-nonlocal coupling. In the computational studies, it is of practical interest to develop robust numerical schemes not only for the numerical solution of nonlocal models, but also for the evaluation of suitably defined derivatives of solutions. This leads to a posteriori nonlocal stress analysis for structure mechanical models.
17

Harmonic integrals on domains with edges

Tarkhanov, Nikolai January 2004 (has links)
We study the Neumann problem for the de Rham complex in a bounded domain of Rn with singularities on the boundary. The singularities may be general enough, varying from Lipschitz domains to domains with cuspidal edges on the boundary. Following Lopatinskii we reduce the Neumann problem to a singular integral equation of the boundary. The Fredholm solvability of this equation is then equivalent to the Fredholm property of the Neumann problem in suitable function spaces. The boundary integral equation is explicitly written and may be treated in diverse methods. This way we obtain, in particular, asymptotic expansions of harmonic forms near singularities of the boundary.
18

Spectral projection for the dbar-Neumann problem

Alsaedy, Ammar, Tarkhanov, Nikolai January 2012 (has links)
We show that the spectral kernel function of the dbar-Neumann problem on a non-compact strongly pseudoconvex manifold is smooth up to the boundary.
19

On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds

Guo, Sheng January 2019 (has links)
No description available.
20

Propriétés des valeurs propres de ballotement pour contenants symétriques

Marushka, Viktor 08 1900 (has links)
Le problème d’oscillation de fluides dans un conteneur est un problème classique d’hydrodynamique qui est etudié par des mathématiciens et ingénieurs depuis plus de 150 ans. Le présent travail est lié à l’étude de l’alternance des fonctions propres paires et impaires du problème de Steklov-Neumann pour les domaines à deux dimensions ayant une forme symétrique. On obtient des résultats sur la parité de deuxième et troisième fonctions propres d’un tel problème pour les trois premiers modes, dans le cas de domaines symétriques arbitraires. On étudie aussi la simplicité de deux premières valeurs propres non nulles d’un tel problème. Il existe nombre d’hypothèses voulant que pour le cas des domaines symétriques, toutes les valeurs propres sont simples. Il y a des résultats de Kozlov, Kuznetsov et Motygin [1] sur la simplicité de la première valeur propre non nulle obtenue pour les domaines satisfaisants la condition de John. Dans ce travail, il est montré que pour les domaines symétriques, la deuxième valeur propre non-nulle du problème de Steklov-Neumann est aussi simple. / The study of liquid sloshing in a container is a classical problem of hydrodynamics that has been actively investigated by mathematicians and engineers over the past 150 years. The present thesis is concerned with the properties of eigenfunctions of the two-dimensional sloshing problem on axially symmetric planar domains. Here the axis of symmetry is assumed to be orthogonal to the free surface of the fluid. In particular, we show that the second and the third eigenfunctions of such a problem are, respectively, odd and even with respect to the axial symmetry. There is a well-known conjecture that all eigenvalues of the two-dimensional sloshing problem are simple. Kozlov, Kuznetsov and Motygin [1] proved the simplicity of the first non-zero eigenvalue for domains satisfying the John's condition. In the thesis we show that for axially symmetric planar domains, the first two non-zero eigenvalues of the sloshing problem are simple.

Page generated in 0.0652 seconds