281 |
Generátor neuronových sítí pro potřeby měření podobnosti obrazu / Neural network generator for image similarity measurementHipča, Tomáš January 2019 (has links)
This thesis deals with designing an automatic generator of deep neural networks for image classification. Theoretical part clarifies what a neural network and formal neuron are. Furthermore, the types of neural network architectures are presented. The focus of this thesis is convolutional neural networks, several pieces of research from this field are mentioned. The practical part of this thesis describes information with regards to the implementation of neural network generator, possible frameworks and programming languages for such implementation. Brief description of the implementation itself is presented as well as implemented layers. Generated neural networks are tested on Google-Landmarks dataset and results are commented upon.
|
282 |
Rozpoznání zvukových událostí pomocí hlubokého učení / Deep learning based sound event recognitionBajzík, Jakub January 2019 (has links)
This paper deals with processing and recognition of events in audio signal. The work explores the possibility of using audio signal visualization and subsequent use of convolutional neural networks as a classifier for recognition in real use. Recognized audio events are gunshots placed in a sound background such as street noise, human voice, animal sounds, and other forms of random noise. Before the implementation, a large database with various parameters, especially reverberation and time positioning within the processed section, is created. In this work are used freely available platforms Keras and TensorFlow for work with neural networks.
|
283 |
Segmentace nádorů mozku v MRI datech s využitím hloubkového učení / Segmentation of brain tumours in MRI images using deep learningUstsinau, Usevalad January 2020 (has links)
The following master's thesis paper equipped with a short description of CT scans and MR images and the main differences between them, explanation of the structure of convolutional neural networks and how they implemented into biomedical image analysis, besides it was taken a popular modification of U-Net and tested on two loss-functions. As far as segmentation quality plays a highly important role for doctors, in experiment part it was paid significant attention to training quality and prediction results of the model. The experiment has shown the effectiveness of the provided algorithm and performed 100 training cases with the following analysis through the similarity. The proposed outcome gives us certain ideas for future improving the quality of image segmentation via deep learning techniques.
|
284 |
Zpracování naměřených signálů z kavitačních experimentů / Analysis of measured signals from cavitation experimentsAsszonyi, Ondřej January 2020 (has links)
This thesis focuses on problem with detection of cavitation in hydraulic systems and devices. Thesis works with data from cavitation tunnel experiment, where cavitation appeared on blade. It founds out if time records and their frequency spectrum is dependent on operating conditions. Data are examined by various statistic methods. All of that is then used in method called neural network.
|
285 |
Strojové učení pro odpovídání na otázky v češtině / Machine Learning for Question Answering in CzechPastorek, Peter January 2020 (has links)
This Master's thesis deals with teaching neural network question answering in Czech. Neural networks are created in Python programming language using the PyTorch library. They are created based on the LSTM structure. They are trained on the Czech SQAD dataset. Because Czech data set is smaller than the English data sets, I opted to extend neural networks with algorithmic procedures. For easier application of algorithmic procedures and better accuracy, I divide question answering into smaller parts.
|
286 |
Realization of LSTM Based Cognitive Radio NetworkValluru, Aravind-Deshikh 08 1900 (has links)
This thesis presents the realization of an intelligent cognitive radio network that uses long short term memory (LSTM) neural network for sensing and predicting the spectrum activity at each instant of time. The simulation is done using Python and GNU Radio. The implementation is done using GNU Radio and Universal Software Radio Peripherals (USRP). Simulation results show that the confidence factor of opportunistic users not causing interference to licensed users of the spectrum is 98.75%. The implementation results demonstrate high reliability of the LSTM based cognitive radio network.
|
287 |
A Memristor-Based Liquid State Machine for Auditory Signal RecognitionHenderson, Stephen Alexander, Jr. 09 August 2021 (has links)
No description available.
|
288 |
Exploring Ocean Animal Trajectory Pattern via Deep LearningWang, Su 23 May 2016 (has links)
We trained a combined deep convolutional neural network to predict seals’ age (3 categories) and gender (2 categories). The entire dataset contains 110 seals with around 489 thousand location records. Most records are continuous and measured in a certain step. We created five convolutional layers for feature representation and established two fully connected structure as age’s and gender’s classifier, respectively. Each classifier consists of three fully connected layers. Treating seals’ latitude and longitude as input, entire deep learning network, which includes 780,000 neurons and 2,097,000 parameters, can reach to 70.72% accuracy rate for predicting seals’ age and simultaneously achieve 79.95% for gender estimation.
|
289 |
Identifying and Predicting Rat Behavior Using Neural NetworksGettner, Jonathan A 01 December 2015 (has links)
The hippocampus is known to play a critical role in episodic memory function. Understanding the relation between electrophysiological activity in a rat hippocampus and rat behavior may be helpful in studying pathological diseases that corrupt electrical signaling in the hippocampus, such as Parkinson’s and Alzheimer’s. Additionally, having a method to interpret rat behaviors from neural activity may help in understanding the dynamics of rat neural activity that are associated with certain identified behaviors.
In this thesis, neural networks are used as a black-box model to map electrophysiological data, representative of an ensemble of neurons in the hippocampus, to a T-maze, wheel running or open exploration behavior. The velocity and spatial coordinates of the identified behavior are then predicted using the same neurological input data that was used for behavior identification. Results show that a nonlinear autoregressive process with exogenous inputs (NARX) neural network can partially identify between different behaviors and can generally determine the velocity and spatial position attributes of the identified behavior inside and outside of the trained interval
|
290 |
Návrh algoritmů pro neuronové sítě řídicí síťový prvek / Design of algorithms for neural networks controlling a network elementStískal, Břetislav January 2008 (has links)
This diploma thesis is devided into theoretic and practice parts. Theoretic part contains basic information about history and development of Artificial Neural Networks (ANN) from last century till present. Prove of the theoretic section is discussed in the practice part, for example learning, training each types of topology of artificial neural networks on some specifics works. Simulation of this networks and then describing results. Aim of thesis is simulation of the active networks element controlling by artificial neural networks. It means learning, training and simulation of designed neural network. This section contains algorithm of ports switching by address with Hopfield's networks, which used solution of typical Trade Salesman Problem (TSP). Next point is to sketch problems with optimalization and their solutions. Hopfield's topology is compared with Recurrent topology of neural networks (Elman's and Layer Recurrent's topology) their main differents, their advantages and disadvantages and supposed their solution of optimalization in controlling of network's switch. From thesis experience is introduced solution with controll function of ANN in active networks elements in the future.
|
Page generated in 0.0423 seconds