• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Temporal Patterns of Neural Synchronization: Synaptic Plasticity and Stochastic Mechanisms

Zirkle, Joel 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Neural synchrony in the brain at rest is usually variable and intermittent, thus intervals of predominantly synchronized activity are interrupted by intervals of desynchronized activity. Prior studies suggested that this temporal structure of the weakly synchronous activity might be functionally significant: many short desynchronizations may be functionally different from few long desynchronizations, even if the average synchrony level is the same. In this thesis, we use computational neuroscience methods to investigate the effects of (i) spike-timing dependent plasticity (STDP) and (ii) noise on the temporal patterns of synchronization in a simple model. The model is composed of two conductance-based neurons connected via excitatory unidirectional synapses. In (i) these excitatory synapses are made plastic, in (ii) two different types of noise implementation to model the stochasticity of membrane ion channels is considered. The plasticity results are taken from our recently published article, while the noise results are currently being compiled into a manuscript. The dynamics of this network is subjected to the time-series analysis methods used in prior experimental studies. We provide numerical evidence that both STDP and channel noise can alter the synchronized dynamics in the network in several ways. This depends on the time scale that plasticity acts on and the intensity of the noise. However, in general, the action of STDP and noise in the simple network considered here is to promote dynamics with short desynchronizations (i.e. dynamics reminiscent of that observed in experimental studies) over dynamics with longer desynchronizations.
2

Modeling Temporal Patterns of Neural Synchronization: Synaptic Plasticity and Stochastic Mechanisms

Joel A Zirkle (9178547) 05 August 2020 (has links)
Neural synchrony in the brain at rest is usually variable and intermittent, thus intervals of predominantly synchronized activity are interrupted by intervals of desynchronized activity. Prior studies suggested that this temporal structure of the weakly synchronous activity might be functionally significant: many short desynchronizations may be functionally different from few long desynchronizations, even if the average synchrony level is the same. In this thesis, we use computational neuroscience methods to investigate the effects of (i) spike-timing dependent plasticity (STDP) and (ii) noise on the temporal patterns of synchronization in a simple model. The model is composed of two conductance-based neurons connected via excitatory unidirectional synapses. In (i) these excitatory synapses are made plastic, in (ii) two different types of noise implementation to model the stochasticity of membrane ion channels is considered. The plasticity results are taken from our recently published article, while the noise results are currently being compiled into a manuscript.<br><br>The dynamics of this network is subjected to the time-series analysis methods used in prior experimental studies. We provide numerical evidence that both STDP and channel noise can alter the synchronized dynamics in the network in several ways. This depends on the time scale that plasticity acts on and the intensity of the noise. However, in general, the action of STDP and noise in the simple network considered here is to promote dynamics with short desynchronizations (i.e. dynamics reminiscent of that observed in experimental studies) over dynamics with longer desynchronizations.

Page generated in 0.1137 seconds