• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synaptic rewiring in neuromorphic VLSI for topographic map formation

Bamford, Simeon A. January 2009 (has links)
A generalised model of biological topographic map development is presented which combines both weight plasticity and the formation and elimination of synapses (synaptic rewiring) as well as both activity-dependent and -independent processes. The question of whether an activity-dependent process can refine a mapping created by an activity-independent process is investigated using a statistical approach to analysingmapping quality. The model is then implemented in custom mixed-signal VLSI. Novel aspects of this implementation include: (1) a distributed and locally reprogrammable address-event receiver, with which large axonal fan-out does not reduce channel capacity; (2) an analogue current-mode circuit for Euclidean distance calculation which is suitable for operation across multiple chips; (3) slow probabilistic synaptic rewiring driven by (pseudo-)random noise; (4) the application of a very-low-current design technique to improving the stability of weights stored on capacitors; (5) exploiting transistor non-ideality to implement partially weightdependent spike-timing-dependent plasticity; (6) the use of the non-linear capacitance of MOSCAP devices to compensate for other non-linearities. The performance of the chip is characterised and it is shown that the fabricated chips are capable of implementing the model, resulting in biologically relevant behaviours such as activity-dependent reduction of the spatial variance of receptive fields. Complementing a fast synaptic weight change mechanism with a slow synapse rewiring mechanism is suggested as a method of increasing the stability of learned patterns.
2

Biomimetic Visual Navigation Architectures for Autonomous Intelligent Systems

Pant, Vivek January 2007 (has links)
Intelligent systems with even the bare minimum of sophistication require extensive computational power and complex processing units. At the same time, small insects like flies are adept at visual navigation, target pursuit, motionless hovering flight, and obstacle avoidance. Thus, biology provides engineers with an unconventional approach to solve complicated engineering design problems. Computational models of the neuronal architecture of the insect brain can provide algorithms for the development of software and hardware to accomplish sophisticated visual navigation tasks. In this research, we investigate biologically-inspired collision avoidance models primarily based on visual motion. We first present a comparative analysis of two leading collision avoidance models hypothesized in the insect brain. The models are simulated and mathematically analyzed for collision and non-collision scenarios. Based on this analysis it is proposed that along with the motion information, an estimate of distance from the obstacle is also required to reliably avoid collisions. We present models with tracking capability as solutions to this problem and show that tracking indirectly computes a measure of distance. We present a camera-based implementation of the collision avoidance models with tracking. The camera-based system was tested for collision and non-collision scenarios to verify our simulation claims that tracking improves collision avoidance. Next, we present a direct approach to estimate the distance from an obstacle by utilizing non-directional speed. We describe two simplified non-directional speed estimation models: the non-directional multiplication (ND-M) sensor, and the non-directional summation (ND-S) sensor. We also analyze the mathematical basis of their speed sensitivity. An analog VLSI chip was designed and fabricated to implement these models in silicon. The chip was fabricated in a 0.18 um process and its characterization results are reported here. As future work, the tracking algorithm and the collision avoidance models may be implemented as a sensor chip and used for autonomous navigation by intelligent systems.

Page generated in 0.074 seconds