31 |
Heme oxygenase and the use of tin protoporphyrin in hypoxia-ischaemia-induced brain damage : mechanisms of actionSutherland, Brad Alexander, n/a January 2009 (has links)
Stroke is the third largest cause of death, and the leading cause of disability worldwide. Treatments are sought to reduce mortality, and increase survival time following an ischaemic stroke. Hypoxia-ischaemia (HI) is the combination of cerebral ischaemia and global hypoxia that can lead to neuronal damage, particularly perinatally. The complex neurodegenerative cascade following ischaemic stroke and HI activates many stress pathways, including heme oxygenase (HO). HO metabolises free heme to release iron, carbon monoxide, and biliverdin, which is subsequently metabolised to bilirubin. This thesis aims to elucidate the role HO plays following HI, and assess any neuroprotective mechanisms using HO modulators.
The 26 day old rat model of HI was used to induce the neurodegenerative cascade. All animals were sacrificed 3 days post-insult. Immunohistochemistry and Western blotting demonstrated that HO-1 was increased in the ipsilateral hemisphere of both HI (by 1.7 � 0.1 fold: p = 0.016, n = 4) and middle cerebral artery occlusion (MCAO) brains (by 1.6 � 0.1 fold: p = 0.037, n = 4), compared to controls. HO-2 was constitutively expressed throughout the control brain, but HI upregulated HO-2 expression (by 1.7 � 0.2 fold: p = 0.027, n = 4) ipsilaterally, whereas MCAO did not alter HO-2 expression. Administration of the HO inhibitor tin protoporphyrin (SnPP; 30[mu]mol/kg intraperitoneally) daily, beginning 1 day prior to HI until sacrifice, reduced infarct volume to 50% � 10 of saline-treated animals (p = 0.039, n = 6-8). The HO inducer ferriprotoporphyrin (FePP; 30[mu]mol/kg) had no effect on infarct volume. HO activity and protein expression were not significantly altered following treatment with SnPP. Therefore, the neuroprotective actions of SnPP may be through alternative mechanisms. SnPP treatment increased HI + saline-induced total nitric oxide synthase (NOS) activity by 1.5 � 0.06 fold (p < 0.001, n = 6-8). Conversely, SnPP inhibited both inducible NOS (50% � 7 of HI + saline; p = 0.045, n = 7-8) and cyclooxygenase (COX) activity (32% � 6 of HI + saline; p = 0.049, n = 4-8). SnPP treatment also increased mitochondrial complex I activity by 1.6 � 0.25 fold (p = 0.04, n = 4-8) and complex V activity by 1.7 � 0.26 fold (p = 0.046, n = 4-8) in the ipsilateral hemisphere. It appears that SnPP is acting on inflammatory and mitochondrial enzymes to produce neuroprotection. In vitro analysis of cultured RAW264.7 macrophages exposed to lipopolysaccharide (LPS; 10[mu]g/mL) treated with SnPP (dose range: 10⁻�⁰M - 10⁻⁵M) did not alter nitrite levels or cell viability. However, high dose SnPP (10⁻⁵M) in the absence of LPS increased nitrite levels from control cells by 2.7 � 0.7 fold (p = 0.043, n = 6), complementing the in vivo total NOS data. Other mechanisms such as NMDA receptor activation were not affected by 100[mu]M SnPP or 100[mu]M SnCl₂ in patch clamped cortical pyramidal neurons.
Overall, the role that HO plays following HI remains unclear, but this thesis provides definitive evidence that SnPP (an established HO inhibitor) provides neuroprotection. This neuroprotection may be due to its effects on inducible pathways such as NOS and COX. Therefore, further experimentation is required to fully elucidate the role that HO plays following cerebral ischaemia, and additional in vivo evidence will be necessary to establish HO inhibitors as a putative candidate for cerebral ischaemia neuroprotection.
|
32 |
Heme oxygenase and the use of tin protoporphyrin in hypoxia-ischaemia-induced brain damage : mechanisms of actionSutherland, Brad Alexander, n/a January 2009 (has links)
Stroke is the third largest cause of death, and the leading cause of disability worldwide. Treatments are sought to reduce mortality, and increase survival time following an ischaemic stroke. Hypoxia-ischaemia (HI) is the combination of cerebral ischaemia and global hypoxia that can lead to neuronal damage, particularly perinatally. The complex neurodegenerative cascade following ischaemic stroke and HI activates many stress pathways, including heme oxygenase (HO). HO metabolises free heme to release iron, carbon monoxide, and biliverdin, which is subsequently metabolised to bilirubin. This thesis aims to elucidate the role HO plays following HI, and assess any neuroprotective mechanisms using HO modulators.
The 26 day old rat model of HI was used to induce the neurodegenerative cascade. All animals were sacrificed 3 days post-insult. Immunohistochemistry and Western blotting demonstrated that HO-1 was increased in the ipsilateral hemisphere of both HI (by 1.7 � 0.1 fold: p = 0.016, n = 4) and middle cerebral artery occlusion (MCAO) brains (by 1.6 � 0.1 fold: p = 0.037, n = 4), compared to controls. HO-2 was constitutively expressed throughout the control brain, but HI upregulated HO-2 expression (by 1.7 � 0.2 fold: p = 0.027, n = 4) ipsilaterally, whereas MCAO did not alter HO-2 expression. Administration of the HO inhibitor tin protoporphyrin (SnPP; 30[mu]mol/kg intraperitoneally) daily, beginning 1 day prior to HI until sacrifice, reduced infarct volume to 50% � 10 of saline-treated animals (p = 0.039, n = 6-8). The HO inducer ferriprotoporphyrin (FePP; 30[mu]mol/kg) had no effect on infarct volume. HO activity and protein expression were not significantly altered following treatment with SnPP. Therefore, the neuroprotective actions of SnPP may be through alternative mechanisms. SnPP treatment increased HI + saline-induced total nitric oxide synthase (NOS) activity by 1.5 � 0.06 fold (p < 0.001, n = 6-8). Conversely, SnPP inhibited both inducible NOS (50% � 7 of HI + saline; p = 0.045, n = 7-8) and cyclooxygenase (COX) activity (32% � 6 of HI + saline; p = 0.049, n = 4-8). SnPP treatment also increased mitochondrial complex I activity by 1.6 � 0.25 fold (p = 0.04, n = 4-8) and complex V activity by 1.7 � 0.26 fold (p = 0.046, n = 4-8) in the ipsilateral hemisphere. It appears that SnPP is acting on inflammatory and mitochondrial enzymes to produce neuroprotection. In vitro analysis of cultured RAW264.7 macrophages exposed to lipopolysaccharide (LPS; 10[mu]g/mL) treated with SnPP (dose range: 10⁻�⁰M - 10⁻⁵M) did not alter nitrite levels or cell viability. However, high dose SnPP (10⁻⁵M) in the absence of LPS increased nitrite levels from control cells by 2.7 � 0.7 fold (p = 0.043, n = 6), complementing the in vivo total NOS data. Other mechanisms such as NMDA receptor activation were not affected by 100[mu]M SnPP or 100[mu]M SnCl₂ in patch clamped cortical pyramidal neurons.
Overall, the role that HO plays following HI remains unclear, but this thesis provides definitive evidence that SnPP (an established HO inhibitor) provides neuroprotection. This neuroprotection may be due to its effects on inducible pathways such as NOS and COX. Therefore, further experimentation is required to fully elucidate the role that HO plays following cerebral ischaemia, and additional in vivo evidence will be necessary to establish HO inhibitors as a putative candidate for cerebral ischaemia neuroprotection.
|
33 |
Ischemic brain damage following transient and moderate compression of sensorimotor cortex in Sprague-Dawley and diabetic Goto-Kakizaki rats /Kundrotienė, Jurgita, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
|
34 |
Distribution and function of nicotinic acetylcholine receptors in glia cells and neurons with focus on the neuroprotective mechanisms of cholesterol-lowering drugs in Alzheimer's disease /Xiu, Jin, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 4 uppsatser.
|
35 |
Investigating beta-amyloid peptide neurotoxicity from neuronal apoptosis to endoplasmic reticulum collapse translational research back to basic science research /Lai, Sau-wan. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 203-226) Also available in print.
|
36 |
Development of models for the study of anesthetic preconditioning using rat pheochromocytoma and mouse neuroblastomaKam, Sarah Anne. January 2009 (has links)
Honors Project--Smith College, Northampton, Mass., 2009. / Includes bibliographical references (p. 54-57).
|
37 |
The signal transducing receptor gp130 is essential for protection of retinal neurons from stress-induced cell death but not for retinal developmentSaadi, Anisse. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 143-161.
|
38 |
Strategies of neuroprotection in an in vivo model of retinal degeneration induced by mitochondrial dysfunctionRojas-Martinez, Julio Cesar. January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2009. / Title from PDF title page (University of Texas Digital Repository, viewed on Sept. 9, 2009). Vita. Includes bibliographical references.
|
39 |
Neurochemical and neuroprotective aspects of phenelzine and its active metabolite [Beta]-phenylethylidenehydrazineMacKenzie, Erin Margaret. January 2009 (has links)
Thesis (Ph.D.)--University of Alberta, 2009. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Neurochemistry, Department of Psychiatry. Title from pdf file main screen (viewed on October 23, 2009). Includes bibliographical references.
|
40 |
Neuroprotection and Neurotransplantation Strategies in Models of Parkinson’s DiseaseGalpern, Wendy R. 16 May 1996 (has links)
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic cell death in the substantia nigra pars compacta (SNc) and dopamine (DA) depletion in the striatum. Current pharmacological treatments are aimed at the replacement of striatal DA via the administration of levodopa. While this therapy is beneficial initially, long-term treatment is associated with significant side effects, and disease progression continues. The present experiments investigate neuroprotective and neurotransplantation strategies as alternatives to palliative pharmacologic treatments.
The optimal therapeutic approach to neurodegenerative diseases would be to protect against cell death and prevent disease progression. PD is well-suited for such neuroprotective strategies as primarily one cell population is affected in this disorder. Neurotrophic factors (NTFs) have been identified which support dopaminergic neuronal survival in vitro. In the present studies, the neuroprotective effects of the neurotrophin brain-derived neurotrophic factor (BDNF) have been evaluated in a 1-methyl-4-phenylpyridinium (MPP+) model of substantia nigra (SN) degeneration. BDNF-secreting fibroblasts were implanted dorsal to the SN prior to the infusion of the mitochondrial complex I inhibitor MPP+. Subsequent histological analysis demonstrated that BDNF is able to attenuate MPP+ induced dopaminergic cell loss in the SNc. Moreover, neurochemical evaluation demonstrated that BDNF is able to enhance DA levels in the remaining SN neurons in this same paradigm.
The cause of cell death in neurodegenerative diseases likely involves the interaction of mitochondrial impairment, excitotoxicity, and oxidative stress. In order to evaluate the mechanism of NTF-mediated protection, the ability of nerve growth factor (NGF) to attenuate the production of the oxidant peroxynitrite was evaluated in a model of mitochondrial impairment. NGF was found to decrease the production of 3-nitrotyrosine, the product of peroxynitrite mediated tyrosine nitration. Thus, NTF-mediated neuroprotection may act in part by decreasing reactive oxygen species and oxidative stress.
At present, neuroprotective therapies are not clinically available. An alternate therapeutic approach to PD is the replacement of striatal DA and reconstruction of synaptic circuitry via the intrastriatal transplantation of fetal dopaminergic neurons. Current transplantation protocols using human fetal tissue are constrained by limited tissue availability. In order to investigate an alternate cell source for the treatment of PD, fetal porcine dopaminergic neurons were implanted into the DA depleted striatum of 6-OHDA lesioned rats. Amphetamine-induced rotational recovery was monitored, and graft survival was evaluated 19 weeks after grafting. In immunosuppressed rats, porcine dopaminergic neurons were found to attenuate rotational deficits and extensively reinnervate the host striatum.
The neuroprotective effects of BDNF suggest that NTFs may be important mediators of dopaminergic neuronal survival and function in the adult brain. However, several conditions including appropriate dosage and delivery need to be determined before clinical applications may be achieved. As an alternative to neuroprotection, neurotransplantation not only restores striatal DA but also reconstructs the synaptic circuitry of the basal ganglia. The finding that porcine dopaminergic neurons survive with in adult host brain, reinnervate the DA depleted striatum, and mediate functional recovery suggests that porcine DA neurons may serve as an alternate cell source for transplantation in PD.
|
Page generated in 0.0795 seconds