Spelling suggestions: "subject:"neurotoxicity A""
11 |
The influence of aluminium on enzymes in the rat brain with special reference to those involved in polyanine biosynthesis /Li, Ching-lu. January 1988 (has links)
Thesis (M.D.S.)--University of Hong Kong, 1988.
|
12 |
Amphetamine-induced dopaminergic toxicity a single dose animal model of Parkinson's disease.Jobes, Michelle L. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Toxicology." Includes bibliographical references (p. 253-266).
|
13 |
The influence of aluminium on enzymes in the rat brain with special reference to those involved in polyanine biosynthesisLi, Ching-lu. January 1988 (has links)
Thesis (M.D.S.)--University of Hong Kong, 1988. / Also available in print.
|
14 |
Evaluation of model systems for the study of protein association / incorporation of Beta-Methylamino-L-Alanine (BMAA)Visser, Claire January 2011 (has links)
β-methylamino-L-alanine (BMAA) is thought to be a contributing factor of Amyotrophic Lateral Sclerosis-Parkinsonism Dementia Complex (ALS/PDC). It has been shown that the levels of toxin ingestion by humans are too low to cause disease. However, it has recently been theorized that this toxin is bioaccumulated within cells. Via a process of slow release from this reservoir, the BMAA is able to bring about neurotoxicity. Mechanisms of uptake and bioaccumulation of BMAA have been proposed in several publications; however the mechanism of protein incorporation of BMAA has not yet been identified. Identifying suitable model systems would be a prerequisite in order for future studies on BMAA protein incorporation. Three specific models were therefore chosen for investigation; mammalian cell lines including C2C12 and HT29, a prokaryotic (E. coli) expression system and yeast cells. The cytotoxity of BMAA was established for the mammalian cell lines and further investigation of BMAA incorporation into cellular proteins was performed on all three above mentioned models. Samples were run on HPLC-MS in order to determine uptake of BMAA into cells or lack thereof. Results indicate negligible cytotoxicity as measured by MTT and CellTitre Blue assays, limited uptake and protein incorporation of BMAA within the prokaryotic model and insignificant uptake of BMAA by yeast cells. Although the uptake of BMAA in the prokaryotic model was not extensive, there was indeed uptake. BMAA was not only taken up into the cells but was also observed in inclusion body protein samples after hydrolysis. After further investigation and use, this model could very well provide researchers with information pertaining to the mechanism of association of BMAA with proteins. Although the other models provided negative results, this research was valuable in the sense that one can narrow down the number of possible model systems available. Also, in seeking models for studying protein association/incorporation, the use of the final target cell is not relevant or necessary as the purpose of the research was to identify a model system in which the mechanism of protein association/incorporation can, in future, be studied.
|
15 |
IN VITRO EFFECTS OF ACRYLAMIDE AND ITS ANALOGUES ON DORSAL ROOT GANGLIA.McKean, Deborah Lea. January 1984 (has links)
No description available.
|
16 |
In vivo neurotoxicity of Aβ and metal ions : relevance for Alzheimer's diseaseBishop, Glenda M. (Glenda Maree), 1976- January 2001 (has links)
Abstract not available
|
17 |
Pharmacokinetics, Cerebrovascular Permeability & Biotransformation of the Neurotoxic Plasticiser N-butylbenzenesulfonamide (NBBS)Samiayah, Ganesh Kumar, School of Physiology & Pharmacology, UNSW January 1997 (has links)
The pharmacokinetics, oral bioavailability, cerebrovascular permeability and biotransformation of the neurotoxic plasticiser n-butylbenzenesulfonamide (NBBS) were studied in order that the human health risk due to environmental exposure to NBBS could be evaluated. The pharmacokinetics of NBBS was determined in Wistar rats, following intravenous administration of the isotopomer [13C6] NBBS (1 mg/kg in 0.9% saline). [13C6] NBBS is cleared from plasma at a rate of 5 ml/min by the liver. The plasticiser has a short distribution phase (t1/2 of 47 seconds) and a long terminal phase (t1/2 of 17 hours). Plasma [13C6] NBBS concentrations, 24 hours after administration, represented 0.04% of the administered dose. These data indicated rapid uptake into tissue, which was subsequently confirmed by monitoring tissue concentrations of [13C6] NBBS for upto 8 hours following administration. [13C6] NBBS was not accumulated by any of the tissues studied (brain, liver, kidney, muscle and adipose tissue). Oral bioavailability was determined by simultaneously administering native NBBS orally and [13C6] NBBS intravenously to Wistar rats. The plasticiser was found to be absorbed erratically and subject to first pass metabolism. Plasma concentrations of orally administered NBBS fluctuated over the duration of the experiment. Furthermore, limitations posed by the assay resulted in truncated oral curves. These factors precluded estimation of areas under the oral NBBS curves to infinity and partial area ratios were instead used to calculate absolute bioavailability (mean of 19%). Cerebrovascular permeability of NBBS was determined with [13C6] NBBS, in Sprague-Dawley rats, using the in-situ brain perfusion technique of Takasato et al. (1984). The uptake of [13C6] NBBS into brain was very rapid and flow limited. Assuming an average cerebral perfusion fluid flow rate of 0.11 ml/s/g, the calculated single pass extraction value for [13C6] NBBS is 99.9% with a Kin of 0.11 ml/s/g. This is in close agreement with experimental values for the 15 second saline perfusions (extraction = 98% - 125% and Kin = 0.108 - 0.137). Differences in regional brain distribution of the plasticiser were not found. In-vitro biotransformation studies revealed one phase I metabolite in incubates of NBBS containing human, rabbit and rat post-mitochondrial supernatant (S9 fraction). This metabolite is 2-hydroxy-n-butylbenzenesulfonamide (NBBS-OH hydroxylated in the Based on these data, environmental exposure to NBBS does not pose a significant human health risk.
|
18 |
Direct and indirect cognitive and psychological consequences of workplace neurotoxic exposure /Coxon, Leonie Wilson. January 2009 (has links)
Thesis (D.Psych.)--Murdoch University, 2009. / Thesis submitted to the Faculty of Health Sciences. Includes bibliographical references.
|
19 |
Potential for human exposure to Beta-N-methylamino-L-alanine in a freshwater systemScott, Laura Louise January 2014 (has links)
β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid associated with human neurodegenerative diseases. The content of BMAA in cyanobacteria is modulated by nitrogen in laboratory cultures. In order to evaluate the potential for human exposure, the nitrogen modulation of BMAA content needed verification in a natural environment. In accordance with laboratory culture studies, data presented in this study show that combined nitrogen was the most significant modulator of both cellular microcystin (MC) and BMAA content in phytoplankton in an environmental cyanobacterial bloom. While BMAA is produced upon nitrogen deprivation, MC is only produced at a specific nitrogen threshold where the rate of increase of nitrogen in the cell exceeds the carbon fixation rate. As BMAA and MC were detected in phytoplankton sourced from the Hartbeespoort Dam reservoir, the transfer of these cyanotoxins to organisms of higher trophic levels was investigated. Both BMAA and MC were detected at high concentrations in the liver and muscle tissue of fish sourced from the Hartbeespoort Dam reservoir indicating that consumption of fish from this reservoir constitutes a serious risk of exposure to cyanotoxins. In addition to the dietary exposure route to BMAA, two recent studies reported a correlation between Amyotrophic Lateral Sclerosis (ALS) incidence and the potential for aerosol exposure to cyanobacteria. With the absence of any evidence of the systemic distribution of BMAA following inhalation, an evaluation of the potential exposure risk associated with living in close proximity to this reservoir was deemed premature. A laboratory experiment investigating the effect and systemic fate of inhaled aerosolised BMAA was therefore conducted in order to determine the feasibility of inhalation as a potential BMAA exposure route. Data from the rat inhalation exposure study, however, showed that in rats BMAA inhalation may not constitute a significant mechanism of toxicity at environmental BMAA levels.
|
20 |
Beta-N-methylamino-L-alanine in South African fresh water cyanobacteria : incidence, prevalence, ecotoxicological considerations and human exposure riskEsterhuizen-Londt, Maranda January 2010 (has links)
β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid associated with human neurodegenerative disease. Due to the cosmopolitan nature of cyanobacteria, detection of BMAA in cyanobacteria has caused concerns about human exposure risk. This study was therefore based on the hypothesis that BMAA poses a health risk to humans either by direct ingestion or by indirect exposure to BMAA from a cyanobacterial source via a freshwater food chain. A validated gas chromatography-mass spectrometry (GC-MS) BMAA analysis method and a confirmatory liquid chromatography-mass spectrometry (LC-MS) method, with improved sensitivity, were developed in addition to a LC-MS/MS method for analyte confirmation. These methods were used to quantify BMAA in South African cyanobacteria, isolated from various potable water reservoirs. The majority of the isolates tested, contained BMAA. Possible human exposure by direct consumption of BMAA released from cyanobacterial blooms was investigated by the development of a robust solid phase extraction (SPE) method used for BMAA concentration and quantification in raw and treated tap water. Despite the use of the SPE method that facilitated the concentration of BMAA from large quantities of water, no free dissolved BMAA was detected in raw or processed fresh water. The fate of exogenous BMAA was therefore investigated firstly by evaluating the efficacy of standard water treatment processes employed in South Africa and secondly by investigating the possibility of BMAA bioaccumulation and biomagnification in aquatic food chains. Standard water treatment processes proved highly efficient at removing free dissolved BMAA, explaining the absence of BMAA in treated tap water. However, the cause of the BMAA absence in raw potable water remained unknown. Uptake of BMAA by model aquatic organisms was investigated in controlled experiments. BMAA uptake was documented in both Ceratophyllum demersum and Daphnia magna, however, BMAA-protein association and biomagnification were not observed in D. magna. BMAA had an inhibitory effect on the oxidative stress enzyme acitivties of both organisms tested (as well as human S9 extracts), resulting in accumulation of detrimental reactive oxygen species (ROS) in the cells. Exposure of crop plants to BMAA in controlled experiments resulted in BMAA uptake, protein association, and subsequent inhibition of the antioxidative enzyme activities. However, BMAA was detected in neither free nor protein-associated form in natural crop plants irrigated with known BMAA-containing bloom water. Post-mortem liver samples of Clarias gariepinus (Catfish) and Crocodylus niloticus (Crocodile), from a natural fresh water ecosystem that experienced frequent cyanobacterial blooms, contained both free and protein-associated BMAA. Higher BMAA concentrations were found in crocodile liver samples compared to fish liver samples, strongly suggesting biomagnification from one trophic level to the next. BMAA concentrations corresponded to crocodile age. This is the first report of bioaccumulation and biomagnification in two trophic levels in a fresh water ecosystem. These findings strongly suggest possible human exposure via aquatic food chains of cyanobacterial origin. Direct BMAA exposure via drinking water is not plausible due to the efficiency of standard water treatment processes to remove BMAA. The use of raw water for agricultural and recreational use, however, remains a problem. The development of management strategies as well as daily tolerable levels for BMAA is urgently required.
|
Page generated in 0.0578 seconds