1 |
Spectral analysis of neutral evolutionShorten, David January 2017 (has links)
It has been argued that much of evolution takes place in the absence of fitness gradients. Such periods of evolution can be analysed by examining the mutational network formed by sequences of equal fitness, that is, the neutral network. It has been demonstrated that, in large populations under a high mutation rate, the population distribution over the neutral network and average mutational robustness are given by the principal eigenvector and eigen- value, respectively, of the network's adjacency matrix. However, little progress has been made towards understanding the manner in which the topology of the neutral network influences the resulting population distribution and robustness. In this work, we build on recent results from spectral graph theory and utilize numerical methods to enhance our understanding of how populations distribute themselves over neutral networks. We demonstrate that, in the presence of certain topological features, the population will undergo an exploration catastrophe and become confined to a small portion of the network. We further derive approximations, in terms of mutational biases, for the population distribution and average robustness in networks with a homogeneous structure. The applicability of these results is explored, first, by a detailed review of the literature in both evolutionary computing and biology concerning the structure of neutral networks. This is extended by studying the actual and predicted population distribution over the neutral networks of H1N1 and H3N2 influenza haemagglutinin during seasons between 2005 and 2016. It is shown that, in some instances, these populations experience an exploration catastrophe. These results provide insight into the behaviour of populations on neutral networks, demonstrating that neutrality does not necessarily lead to an exploration of genotype/phenotype space or an associated increase in population diversity. Moreover, they provide a plausible explanation for conflicting results concerning the relationship between robustness and evolvability.
|
2 |
Explorations into interactions between learning and evolution using genetic algorithmsMayley, Giles January 1999 (has links)
No description available.
|
3 |
Fitness landscapes and search in the evolutionary design of digital circuitsVassilev, Vesselin K. January 2000 (has links)
No description available.
|
4 |
The Role of Developmental Bias in a Simulated Evo-devo SystemPsujek, Sean Thomas 22 January 2009 (has links)
No description available.
|
5 |
National freight transport planning : towards a Strategic Planning Extranet Decision Support System (SPEDSS)Rudolph, Melanie M. January 1998 (has links)
This thesis provides a `proof-of-concept' prototype and a design architecture for a Object Oriented (00) database towards the development of a Decision Support System (DSS) for the national freight transport planning problem. Both governments and industry require a Strategic Planning Extranet Decision Support System (SPEDSS) for their effective management of the national Freight Transport Networks (FTN). This thesis addresses the three key problems for the development of a SPEDSS to facilitate national strategic freight planning: 1) scope and scale of data available and required; 2) scope and scale of existing models; and 3) construction of the software. The research approach taken embodies systems thinking and includes the use of: Object Oriented Analysis and Design (OOA/D) for problem encapsulation and database design; artificial neural network (and proposed rule extraction) for knowledge acquisition of the United States FTN data set; and an iterative Object Oriented (00) software design for the development of a `proof-of-concept' prototype. The research findings demonstrate that an 00 approach along with the use of 00 methodologies and technologies coupled with artificial neural networks (ANNs) offers a robust and flexible methodology for the analysis of the FTN problem domain and the design architecture of an Extranet based SPEDSS. The objectives of this research were to: 1) identify and analyse current problems and proposed solutions facing industry and governments in strategic transportation planning; 2) determine the functional requirements of an FTN SPEDSS; 3) perform a feasibility analysis for building a FTN SPEDSS `proof-of-concept' prototype and (00) database design; 4) develop a methodology for a national `internet-enabled' SPEDSS model and database; 5) construct a `proof-of-concept' prototype for a SPEDSS encapsulating identified user requirements; 6) develop a methodology to resolve the issue of the scale of data and data knowledge acquisition which would act as the `intelligence' within a SPDSS; 7) implement the data methodology using Artificial Neural Networks (ANNs) towards the validation of it; and 8) make recommendations for national freight transportation strategic planning and further research required to fulfil the needs of governments and industry. This thesis includes: an 00 database design for encapsulation of the FTN; an `internet-enabled' Dynamic Modelling Methodology (DMM) for the virtual modelling of the FTNs; a Unified Modelling Language (UML) `proof-of-concept' prototype; and conclusions and recommendations for further collaborative research are identified.
|
6 |
Utilizacao de redes neurais artificiais para determinar o tempo de resposta de sensores de temperatura do tipo RTD / Time response of temperature sensors using neural networksSANTOS, ROBERTO C. dos 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:28:08Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:44Z (GMT). No. of bitstreams: 0 / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
7 |
Online Anomaly Detection for Time Series. Towards Incorporating Feature Extraction, Model Uncertainty and Concept Drift Adaptation for Improving Anomaly DetectionTambuwal, Ahmad I. January 2021 (has links)
Time series anomaly detection receives increasing research interest given
the growing number of data-rich application domains. Recent additions
to anomaly detection methods in research literature include deep learning
algorithms. The nature and performance of these algorithms in sequence
analysis enable them to learn hierarchical discriminating features
and time-series temporal nature. However, their performance is affected
by the speed at which the time series arrives, the use of a fixed threshold,
and the assumption of Gaussian distribution on the prediction error
to identify anomalous values. An exact parametric distribution is often
not directly relevant in many applications and it’s often difficult to select
an appropriate threshold that will differentiate anomalies with noise.
Thus, implementations need the Prediction Interval (PI) that quantifies the
level of uncertainty associated with the Deep Neural Network (DNN) point
forecasts, which helps in making a better-informed decision and mitigates
against false anomaly alerts. To achieve this, a new anomaly detection
method is proposed that computes the uncertainty in estimates using quantile
regression and used the quantile interval to identify anomalies. Similarly,
to handle the speed at which the data arrives, an online anomaly detection
method is proposed where a model is trained incrementally to adapt
to the concept drift that improves prediction. This is implemented using a
window-based strategy, in which a time series is broken into sliding windows
of sub-sequences as input to the model. To adapt to concept drift,
the model is updated when changes occur in the new arrival instances.
This is achieved by using anomaly likelihood which is computed using the
Q-function to define the abnormal degree of the current data point based
on the previous data points. Specifically, when concept drift occurs, the
proposed method will mark the current data point as anomalous. However,
when the abnormal behavior continues for a longer period of time,
the abnormal degree of the current data point will be low compared to the
previous data points using the likelihood. As such, the current data point is
added to the previous data to retrain the model which will allow the model
to learn the new characteristics of the data and hence adapt to the concept
changes thereby redefining the abnormal behavior. The proposed method
also incorporates feature extraction to capture structural patterns in the
time series. This is especially significant for multivariate time-series data,
for which there is a need to capture the complex temporal dependencies
that may exist between the variables. In summary, this thesis contributes
to the theory, design, and development of algorithms and models for the
detection of anomalies in both static and evolving time series data.
Several experiments were conducted, and the results obtained indicate the
significance of this research on offline and online anomaly detection in
both static and evolving time-series data. In chapter 3, the newly proposed
method (Deep Quantile Regression Anomaly Detection Method) is evaluated
and compared with six other prediction-based anomaly detection
methods that assume a normal distribution of prediction or reconstruction
error for the identification of anomalies. Results in the first part of
the experiment indicate that DQR-AD obtained relatively better precision
than all other methods which demonstrates the capability of the method
in detecting a higher number of anomalous points with low false positive
rates. Also, the results show that DQR-AD is approximately 2 – 3
times better than the DeepAnT which performs better than all the remaining
methods on all domains in the NAB dataset. In the second part of the
experiment, sMAP dataset is used with 4-dimensional features to demonstrate
the method on multivariate time-series data. Experimental result
shows DQR-AD have 10% better performance than AE on three datasets
(SMAP1, SMAP3, and SMAP5) and equal performance on the remaining
two datasets. In chapter 5, two levels of experiments were conducted
basis of false-positive rate and concept drift adaptation. In the first level
of the experiment, the result shows that online DQR-AD is 18% better
than both DQR-AD and VAE-LSTM on five NAB datasets. Similarly, results
in the second level of the experiment show that the online DQR-AD
method has better performance than five counterpart methods with a relatively
10% margin on six out of the seven NAB datasets. This result
demonstrates how concept drift adaptation strategies adopted in the proposed
online DQR-AD improve the performance of anomaly detection in
time series. / Petroleum Technology Development Fund (PTDF)
|
8 |
Forecasting hourly electricity demand in South Africa using machine learning modelsThanyani, Maduvhahafani 12 August 2020 (has links)
MSc (Statistics) / Department of Statistics / Short-term load forecasting in South Africa using machine learning and statistical models is discussed in this study. The research is focused on carrying out a comparative analysis in forecasting hourly electricity demand. This study was carried out using South Africa’s aggregated hourly load data from Eskom. The comparison is carried out in this study using support vector regression (SVR), stochastic gradient boosting (SGB), artificial neural networks (NN) with generalized additive model (GAM) as a benchmark model in forecasting hourly electricity demand. In both modelling frameworks, variable selection is done using least absolute shrinkage and selection operator (Lasso). The SGB model yielded the least root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) on testing data. SGB model also yielded the least RMSE, MAE and MAPE on training data. Forecast combination of the models’ forecasts is done using convex combination and quantile regres-
sion averaging (QRA). The QRA was found to be the best forecast combination model
ibased on the RMSE, MAE and MAPE. / NRF
|
Page generated in 0.0529 seconds