• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 295
  • 69
  • 43
  • 11
  • 10
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 493
  • 211
  • 135
  • 72
  • 72
  • 63
  • 61
  • 58
  • 51
  • 51
  • 47
  • 46
  • 45
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

[en] IMPACT OF THE COSMIC NEUTRINO BACKGROUND IN THE EXPANSION OF THE UNIVERSE / [pt] IMPACTO DO FUNDO CÓSMICO DE NEUTRINO NA EXPANSÃO DO UNIVERSO

ALEXANDER ARGUELLO QUIROGA 11 January 2010 (has links)
[pt] Os neutrinos são produzidos copiosamente no Universo primordial e são hoje as espécies mais abundantes de partículas após os fótons. Com a descoberta da oscilação de neutrinos sabe-se que eles possuem massa. Os efeitos de neutrinos na formação de estruturas têm sido muito estudados e a comparação com os dados observacionais estabelece limites sobre a soma de suas massas. Nesta monografia abordamos outro aspecto dos neutrinos em cosmologia que tem sido pouco estudado na literatura: a sua influência na expansão global e suas possíveis implicações observacionais. Um aspecto interessante dos neutrinos do fundo cósmico é que, dentro dos limites actuais em suas massas, ao menos uma espécie deve ter passado de um regime relativístico a não-relativístico desde o desacoplamento matéria-radiação até o presente. Essa mudança de regime poderia acarretar em efeitos observacionais característicos desse processo. Neste trabalho investigamos a equação de estado dos neutrinos em função de sua massa e sua temperatura. A partir desse resultado, obtemos a taxa de expansão e a distância de luminosidade em função do desvio para o vermelho para um Universo contendo neutrinos massivos, além de matéria escura, constante cosmológica e radiação. Embora espera-se que o impacto dos neutrinos nessas quantidades observáveis seja pequeno, o objetivo deste trabalho é verificar se ele pode ser mensurável no contexto da emergente cosmologia de presição. / [en] Neutrinos are produced copiously in the primordial Universe and today they are the most abundant specie of particles after the photons. With the discovery of neutrinos oscillation it is known that at least two of them have mass, although the absolute values are unknown. The effects of massive neutrinos in the large scale structure formation have been much studied and the comparison with observational data establishes limits over the neutrinos mass sum. In this dissertation we broach other aspect of neutrinos in cosmology which has been few studied in literature: its influence in the global expansion and the possible observational implications. An interesting aspect of cosmic neutrinos background is that inside the present masses limits at least one specie must have passed from a relativistic regime to a non-relativist one, since the matter-radiation decoupling until now. This change in regime could cause observational effects characteristics of this process. In this research we investigate the neutrinos state equation in function of their mass and temperature. From this result, we obtain the expansion rate and the luminosity distance in function of the Universe red-shift considering the presence of massive neutrinos, besides the dark matter, cosmological constant and radiation. Even through we expect that the neutrinos impact in these observable be small, the objective of this work is to verify if it can be measured in the context of the emergent precision cosmology.
62

Search for heavy Majorana neutrinos in ρρ collisions at √s=8 TeV with the ATLAS detector

Klinger, Joel Alexander January 2014 (has links)
The discovery of non-zero neutrino masses has introduced a new mass scale into the Standard Model of particle physics that is at least six orders of magnitude below the electron mass. In the absence of a Standard Model mechanism that can explain the origin of the neutrino mass scale, one can consider the possibility that neutrinos are Majorana fermions which would allow right-handed neutrinos to acquire an additional mass term without requiring new interactions. A mixing of the neutrino Majorana mass terms and Standard Model Dirac mass terms generates mass eigenstates corresponding to light neutrinos, which have already been observed, and heavy neutrinos, which have not. This thesis presents a search for same-sign lepton pairs from the decay of heavy Majorana neutrinos produced in sqrt(s)=8 TeV proton-proton collisions in the ATLAS detector at the CERN Large Hadron Collider, using data corresponding to an integrated luminosity of 20.3 fb^(-1). No excess of events above the expected background is observed and 95% confidence level upper limits are set on the cross-section times branching ratio with respect to heavy Majorana neutrino masses in the range 100 to 500 GeV. The presented limits are the most stringent direct limits set to date for heavy neutrino masses greater than 100 GeV.
63

Procura de indícios de neutrinos estéreis nos experimentos IceCube e KATRIN / Looking for signs of sterile neutrinos in the KATRIN and IceCube experiments

Basto Gonzalez, Victor Saul, 1977- 24 August 2018 (has links)
Orientador: Orlando Luis Goulart Peres / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-24T13:21:19Z (GMT). No. of bitstreams: 1 BastoGonzalez_VictorSaul_D.pdf: 37659795 bytes, checksum: f4492cea9594ac4fbffc288a0c46526a (MD5) Previous issue date: 2014 / Resumo: Motivados pelos indícios experimentais da existência de um quarto neutrino, que surge nos dados de oscilações coletados nos experimentos de aparecimento e desaparecimento de neutrinos, e pela possibilidade teórica de explicar a pequena massa dos neutrinos através de dimensões extras grandes, fizemos análises em procura de vestígios destas duas motivações nos experimentos IceCube e KATRIN. A existência deste quarto neutrino implicaria 1) que existem mais neutrinos que os três tipos de neutrinos do Modelo Padrão da física de partículas, 2) que as interações deste novo neutrino não são descritas pelo Modelo Padrão, 3) que os parâmetros da mistura dos três tipos de neutrinos do Modelo Padrão seriam afetados pela mistura com este novo neutrino e 4) que a diferença dos quadrados das massas, ?m^{2}, associada a este neutrino seria grande, ?m^{2} ~1 eV^{2}. Usando os dados de neutrinos atmosféricos de IceCube, podemos indagar pela existência do quarto neutrino, pois para, ?m^{2} ~1 eV^{2} acontece uma conversão de sabor devida ao efeito de matéria sobre o neutrino no intervalo de energias analisado no IceCube. Assim, este efeito de matéria permite-nos pôr limites sobre os parâmetros que governam as oscilações de neutrinos estéreis. O experimento KATRIN procurará medir a massa do neutrino. Esta medida será feita analisando a cinemática dos elétrons emitidos no decaimento beta do Trítio que é uma medida independente do modelo físico, pois está fundamentada na conservação da energia. A presença de estados mais pesados, como os que existem quando neutrinos estéreis estão presentes, nos permitirá vincular estes neutrinos estéreis. Especificamente, analisamos em KATRIN indícios de um e dois neutrinos estéreis e também de dimensões extras grandes / Abstract: Motivated by the experimental evidence of the existence of a fourth neutrino, which arises from the data collected of neutrino oscillations in appearance and disappearance experiments, and by the theoretical possibility to explain the smallness of the mass of the neutrinos through large extra dimensions, we performed analyses in search of seeking indication of these two motivations in the IceCube and KATRIN experiments. The existence of this fourth neutrino would imply 1) that there are more types of neutrinos than the three types of neutrinos present in the Standard Model of particle physics, 2) that this new neutrino interactions are not described by the Standard Model, 3) that the parameters of the three neutrinos mixing would be affected by mixing with this new type of neutrino, and 4) that the squared-mass difference , ?m^{2} associated with this new neutrino would be large, , ?m^{2} ~1 eV^{2}. Using the atmospheric neutrino data from IceCube, we can investigate the existence of the fourth neutrino because a flavor conversion happens in the limit , ?m^{2} ~1 eV^{2} due to the effect of matter on the neutrino in the range of energies analyzed in the IceCube. Thus, this matter effect allows us to constrain the parameters that govern the sterile neutrino oscillations. The KATRIN experiment will seek to measure the neutrino mass. This measure will be performed by analyzing the kinematics of electrons emitted in the tritium beta decay, which is an independent measure of the physical model because it is based on energy conservation. The presence of heavier states such as those that exist when sterile neutrinos are present, will allow us to constrain these sterile neutrinos. Specifically, we analyze in KATRIN evidence of one and two sterile neutrinos and also of large extra dimensions / Doutorado / Física / Doutor em Ciências
64

MicroBooNE: Neutron Induced Cosmogenic p0s Ryan A. Grosso

Grosso, Ryan A., Ph.D. 02 October 2018 (has links)
No description available.
65

Annual Modulation Measurement of the Low Energy Solar Neutrino Flux with the Borexino Detector

Manecki, Szymon M. 20 June 2013 (has links)
This work reports a first attempt to measure the solar neutrino annual<br />flux modulation due to Earth\'s elliptical orbit with the Borexino detector. Borexino is a real-time calorimetric detector for low energy neutrino spectroscopy located in the underground laboratory of Gran Sasso, Italy. The experiment\'s main focus is the direct measurement of the 7Be solar neutrino flux of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. The original goal of this work was to quantify sensitivity of the Borexino detector to a 7% peak-to-peak signal variation over the course of a year and study background stability. A Monte-Carlo simulated sample of the expected variation was prepared in two phases of data acquisition, Phase I that spans from May-2007 to May-2010 and Phase II from October-2011 to September-2012. The data was then fitted in the time domain with a sinusoidal function and analyzed with the Lomb-Scargle fast Fourier transformation in the search for significant periodicities between periods of 0.5 and 1.5 years. The search was performed in the energy window dominated by 7Be, [210; 760] keV, and 60-day bins in the case of the fit and 10-bins for the Lomb-Scargle scan. This work also contains study of the post-purification data of Phase II beyond September-2012 with a prediction for the future sensitivity and justification of the achieved background levels. / Ph. D.
66

Investigation of the Effects of Invisible Neutrino Decay at the Proposed ESSnuSB Experiment / Undersökning av Osynliga Neutrinosönderfall vid det Föreslagna ESSnuSB Experimentet

Kempe, Daniel January 2021 (has links)
This thesis studies neutrino oscillations at the proposed ESSnuSB experiment and the effects of invisible decay, where the neutrino mass states are assumed to be able to decay, on the planned measurements and the physics potential for this experiment to detect neutrino decays. This is accomplished by simulating a combined scenario of neutrino oscillations and invisible neutrino decay. It is found that the ESSnuSB experiment would be able to put a bound on the decay parameter $\tau_3 / m_3 = 2.64 (1.68) \times 10^{-11}$~s/eV for the baseline option $360 (540)$~km at $3\sigma$. Further, the effect of invisible neutrino decay on measurements of CP-violation and the precision measurements of $\delta_{\mathrm{CP}}$ for both baseline options are investigated. The results show that the effect is not significant in any case for CP-violation measurements. A significant difference in the precision measurements of $\delta_{\mathrm{CP}}$ is found only when decay is assumed to exist but is not accounted for in the theoretical model. / Det här arbetet undersöker neutrinooscillationer vid det föreslagna experimentet ESSnuSB och ett nytt scenario med osynligt sönderfall av neutriner, där neutriner antas sönderfalla till partiklar som inte växelverkar. Arbetet undersöker hur väl ESSnuSB experimentet kan skilja en modell med neutrinosönderfall från Standardmodellen för neutriner utan sönderfall och hur experimentets andra tester påverkas av neutrinosönderfall. Studien har genomförts genom att simulera en kombinerad modell av neutrinooscillationer och neutrinosönderfall för ESSnuSB-experimentet. Analysen visar att ESSnuSB-experimentet skulle kunna sätta en $3\sigma$-gräns på sönderfallsparametern $\tau_3 / m_3 = 2.64 (1.68) \times 10^{-11}$~s/eV för baslinjelängden $360 (540)$~km. Vidare så studeras hur neutrinosönderfall påverkar mätningar av CP-symmetribrott och precisionsmätning av parametern $\delta_{\mathrm{CP}}$ för båda baslinjelängderna. Resultaten visar att påverkan av neutrinosönderfall på mätningar av CP-symmetribrott är liten. En signifikant skillnad i precisionsmätning av $\delta_{\mathrm{CP}}$ kan ses enbart då neutrinosönderfall antas sant men inte inkluderas i den teoretiska modellen.
67

Calibration of the COHERENT Neutrino Flux Normalization Detector

Tellez-Giron-Flores, Karla Rosita 14 November 2023 (has links)
Neutrinos hold the promise of untangling many unresolved questions in particle physics. Their unique properties and behaviors offer a distinctive window into understanding the fundamentals of the universe, potentially providing answers to some of the most deep puzzles in modern physics. CEνNS, or Coherent Elastic Neutrino-Nucleus Scattering, is a process where a neutrino interacts with an atomic nucleus and scatters away, leaving the nucleus to recoil. CEνNS is an important area of study for understanding neutrino properties as well as their role in the universe. The COHERENT collaboration was the first to measure CEνNS, using neutrinos from the Spallation Neutron Source (SNS). The direct measurement of the SNS neutrino flux is vital for the precision of CEνNS measurements. This work introduces the latest addition to the COHERENT's armory –a D2O detector specifically designed to measure the SNS neutrino flux. In the present dissertation, the emphasis is made on the steps taken to operationalize COHERENT's D2O detector. This work unfolds the intensive simulation work directed to determine the detector's optimal design, ensuring it stands strong to the demands of neutrino physics experiments. Establishing the detector's calibration is essential to its operational phase. A dedicated calibration system, described in detail in this work, has been developed, utilizing encapsulated LED flashers controlled by a microcontroller unit to ensure the systematic and reliable calibration of the detector. A significant portion of the document is devoted to the calibration analysis, where we use Michel electrons to obtain an energy scale for the detector, thereby ensuring the reliability and accuracy of the future neutrino flux measurements. / Doctor of Philosophy / This dissertation delves into the fascinating world of neutrinos, subatomic particles that travel through space and matter, impacting the universe in many ways. Their elusive nature makes them a fascinating subject of study, as understanding them better can reveal more about the fundamentals of the cosmos. One process involving neutrinos is Coherent Elastic Neutrino-Nucleus Scattering (CEνNS), which is the main focus of the COHERENT experi- ment. CEνNS happens when a neutrino interacts with an atomic nucleus and scatters away. It is a vital field of study as it can provide insights into neutrino properties and behavi- ors, helping us explore many unanswered questions in physics. As part of COHERENT's experimental program, there is the need to measure the neutrino flux directly. This pre- cise measurement is crucial for ensuring the accuracy and reliability of the COHERENT's findings. To achieve this, COHERENT has introduced a new detector, filled with heavy water (D2O), designed to carefully capture and analyze neutrinos. This work outlines the extensive simulation undertaken to ensure the detector's effectiveness. Before the detector can successfully measure neutrino interactions, it must be carefully calibrated. This docu- ment also describes the construction of a unique calibration system, a critical step for the project's success. Finally, this dissertation highlights the development of a detailed calibra- tion analysis, an essential component for ensuring the detector's readings are accurate and trustworthy. This comprehensive preparation is fundamental for the next exciting phases of COHERENT's research into the mysterious world of neutrinos.
68

A Binned Search for Ultra High Energy Neutrinos with Data from the Third Flight of the Antarctic Impulsive Transient Antenna

Gordon, Jacob William Hunter 01 June 2018 (has links)
No description available.
69

Sterile Neutrino Searches

Delgadillo Franco, Luis Angel 15 June 2021 (has links)
In the first part of the thesis we explore the sensitivity to sterile neutrinos by using a novel kaon tagging technology: ENUBET, the proposed experiment could decisively test indications from the experiments Neutrino-4 and IceCube. In the second part of the thesis we discuss the current status of sterile neutrino searches at nuclear reactors, we present a study with the optimization of a green field, two baseline reactor experiment with respect to the sensitivity for electron anti-neutrino disappearance in search of a light sterile neutrino at both research and commercial reactors. We find that a total of 5 tons of detectors deployed at a commercial reactor with a closest approach of 25 m can probe the mixing angle sin²2θ down to ∼ 5 × 10⁻³ around ∆m² ∼ 1 eV² . The same detector mass deployed at a research reactor can be sensitive up to ∆m² ∼ 20 − 30 eV² assuming a closest approach of 3 m and excellent energy resolution, such as that projected for TAO. We also find that lithium doping of the reactor could be effective in increasing the sensitivity for higher ∆m² values. / Master of Science / A sterile neutrino is a particle that is not included in the actual content of matter at the fundamental level. Our goal in this thesis was to search for an imprint of this particle at neutrino experiments. We performed numerical simulations using the experimental specification given in the literature to predict what this signal should look like. The importance of searching for this particle arises from indications at neutrino nuclear experiments, if this particle exists, that would imply new physics beyond our actual understanding of the matter content in the universe. The first search was performed at an experimental facility called ENUBET and the second search was performed at nuclear reactors. Testing this elusive particle means we need to determine two parameters from a model. The results of the aforementioned parameter space searches are presented in this thesis. The statistical significance in our findings is not entirely conclusive to either confirm or refute the sterile neutrino. The benefits of studying neutrinos at nuclear reactors is that they are produced in generating electrical power as well as monitoring nuclear weapons.
70

Inclusive and exclusive electron scattering data analysis from Jefferson Lab experiment E12-14-012

Murphy, Matthew Douglas 19 January 2021 (has links)
Since the first observations of neutrino oscillation, neutrino experiments have come a long way toward precise measurements of the neutrino oscillation parameters, but some obstacles still remain. The next generation of oscillation experiments, including the Deep Underground Neutrino Experiment (DUNE), will be using the Liquid Argon Time Projection Chambers (LArTPCs) with natural argon as the neutrino target material. A precise model of the neutrino cross section on argon does not exist, which is a source of significant uncertainty in such experiments. The E12-14-012 experiment at Jefferson Lab seeks to help remedy this via electron scattering measurements on argon and titanium targets. The experiment collected both inclusive (e,e') and exclusive (e,e'p) data at a wide range of kinematics with the intent to measure the electron-nucleus cross section and thus derive a spectral function for argon that can be used with neutrino experiments. The use of titanium in this experiment stems from the equivalent shell structure that its protons share with the neutrons in argon, which will be crucial in oscillation experiments but cannot be measured directly in electron scattering. This thesis collects several papers which present results from the E12-14-012 experiment. These results include the inclusive (e,e') cross sections for carbon, titanium, argon, and aluminum at a beam energy of 2.22 GeV and a scattering angle of 15.54 deg with uncertainty of less than 5%. Also included are the first results of the exclusive (e,e'p) cross section on argon and titanium. / Doctor of Philosophy / Since the first observations of neutrino oscillation, neutrino experiments have come a long way toward precise measurements of the neutrino oscillation parameters, but some of the properties of neutrinos still remain uncertain. The next generation of neutrino oscillation experiments, including the Deep Underground Neutrino Experiment (DUNE), will be using the Liquid Argon Time Projection Chambers (LArTPCs) with natural argon as the neutrino target material. A precise model of the neutrino cross section on argon does not exist, which will reduce the opportunity for DUNE to measure the neutrino properties with high precision. The E12-14-012 experiment at Jefferson Lab seeks to help remedy this via electron scattering measurements on argon and titanium targets. The experiment collected both inclusive (e,e') and exclusive (e,e'p) data.The goal of this experiment is measure the electron-nucleus interactions and provide a nuclear model for electron and neutrino interactions. This Ph.D. thesis collects several papers which present the results from the Jefferson lab E12-14-012 experiment.

Page generated in 0.0839 seconds